Whakaoti mō x
x=3
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}+45-24x=0
Tangohia te 24x mai i ngā taha e rua.
x^{2}+15-8x=0
Whakawehea ngā taha e rua ki te 3.
x^{2}-8x+15=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-8 ab=1\times 15=15
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-15 -3,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 15.
-1-15=-16 -3-5=-8
Tātaihia te tapeke mō ia takirua.
a=-5 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(x^{2}-5x\right)+\left(-3x+15\right)
Tuhia anō te x^{2}-8x+15 hei \left(x^{2}-5x\right)+\left(-3x+15\right).
x\left(x-5\right)-3\left(x-5\right)
Tauwehea te x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-5\right)\left(x-3\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=3
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x-3=0.
3x^{2}+45-24x=0
Tangohia te 24x mai i ngā taha e rua.
3x^{2}-24x+45=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 3\times 45}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -24 mō b, me 45 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 3\times 45}}{2\times 3}
Pūrua -24.
x=\frac{-\left(-24\right)±\sqrt{576-12\times 45}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-24\right)±\sqrt{576-540}}{2\times 3}
Whakareatia -12 ki te 45.
x=\frac{-\left(-24\right)±\sqrt{36}}{2\times 3}
Tāpiri 576 ki te -540.
x=\frac{-\left(-24\right)±6}{2\times 3}
Tuhia te pūtakerua o te 36.
x=\frac{24±6}{2\times 3}
Ko te tauaro o -24 ko 24.
x=\frac{24±6}{6}
Whakareatia 2 ki te 3.
x=\frac{30}{6}
Nā, me whakaoti te whārite x=\frac{24±6}{6} ina he tāpiri te ±. Tāpiri 24 ki te 6.
x=5
Whakawehe 30 ki te 6.
x=\frac{18}{6}
Nā, me whakaoti te whārite x=\frac{24±6}{6} ina he tango te ±. Tango 6 mai i 24.
x=3
Whakawehe 18 ki te 6.
x=5 x=3
Kua oti te whārite te whakatau.
3x^{2}+45-24x=0
Tangohia te 24x mai i ngā taha e rua.
3x^{2}-24x=-45
Tangohia te 45 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{3x^{2}-24x}{3}=-\frac{45}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\left(-\frac{24}{3}\right)x=-\frac{45}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-8x=-\frac{45}{3}
Whakawehe -24 ki te 3.
x^{2}-8x=-15
Whakawehe -45 ki te 3.
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=-15+16
Pūrua -4.
x^{2}-8x+16=1
Tāpiri -15 ki te 16.
\left(x-4\right)^{2}=1
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=1 x-4=-1
Whakarūnātia.
x=5 x=3
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}