Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}=12-40
Tangohia te 40 mai i ngā taha e rua.
3x^{2}=-28
Tangohia te 40 i te 12, ka -28.
x^{2}=-\frac{28}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{2\sqrt{21}i}{3} x=-\frac{2\sqrt{21}i}{3}
Kua oti te whārite te whakatau.
3x^{2}+40-12=0
Tangohia te 12 mai i ngā taha e rua.
3x^{2}+28=0
Tangohia te 12 i te 40, ka 28.
x=\frac{0±\sqrt{0^{2}-4\times 3\times 28}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me 28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\times 28}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\times 28}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{-336}}{2\times 3}
Whakareatia -12 ki te 28.
x=\frac{0±4\sqrt{21}i}{2\times 3}
Tuhia te pūtakerua o te -336.
x=\frac{0±4\sqrt{21}i}{6}
Whakareatia 2 ki te 3.
x=\frac{2\sqrt{21}i}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{21}i}{6} ina he tāpiri te ±.
x=-\frac{2\sqrt{21}i}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{21}i}{6} ina he tango te ±.
x=\frac{2\sqrt{21}i}{3} x=-\frac{2\sqrt{21}i}{3}
Kua oti te whārite te whakatau.