Whakaoti mō x (complex solution)
x=-\frac{2\sqrt{21}i}{3}\approx -0-3.055050463i
x=\frac{2\sqrt{21}i}{3}\approx 3.055050463i
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}=12-40
Tangohia te 40 mai i ngā taha e rua.
3x^{2}=-28
Tangohia te 40 i te 12, ka -28.
x^{2}=-\frac{28}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{2\sqrt{21}i}{3} x=-\frac{2\sqrt{21}i}{3}
Kua oti te whārite te whakatau.
3x^{2}+40-12=0
Tangohia te 12 mai i ngā taha e rua.
3x^{2}+28=0
Tangohia te 12 i te 40, ka 28.
x=\frac{0±\sqrt{0^{2}-4\times 3\times 28}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me 28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\times 28}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\times 28}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{-336}}{2\times 3}
Whakareatia -12 ki te 28.
x=\frac{0±4\sqrt{21}i}{2\times 3}
Tuhia te pūtakerua o te -336.
x=\frac{0±4\sqrt{21}i}{6}
Whakareatia 2 ki te 3.
x=\frac{2\sqrt{21}i}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{21}i}{6} ina he tāpiri te ±.
x=-\frac{2\sqrt{21}i}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{21}i}{6} ina he tango te ±.
x=\frac{2\sqrt{21}i}{3} x=-\frac{2\sqrt{21}i}{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}