Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+4x-8+4x+2
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
x^{2}+8x-8+2
Pahekotia te 4x me 4x, ka 8x.
x^{2}+8x-6
Tāpirihia te -8 ki te 2, ka -6.
factor(x^{2}+4x-8+4x+2)
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
factor(x^{2}+8x-8+2)
Pahekotia te 4x me 4x, ka 8x.
factor(x^{2}+8x-6)
Tāpirihia te -8 ki te 2, ka -6.
x^{2}+8x-6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-6\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{64-4\left(-6\right)}}{2}
Pūrua 8.
x=\frac{-8±\sqrt{64+24}}{2}
Whakareatia -4 ki te -6.
x=\frac{-8±\sqrt{88}}{2}
Tāpiri 64 ki te 24.
x=\frac{-8±2\sqrt{22}}{2}
Tuhia te pūtakerua o te 88.
x=\frac{2\sqrt{22}-8}{2}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{22}}{2} ina he tāpiri te ±. Tāpiri -8 ki te 2\sqrt{22}.
x=\sqrt{22}-4
Whakawehe -8+2\sqrt{22} ki te 2.
x=\frac{-2\sqrt{22}-8}{2}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{22}}{2} ina he tango te ±. Tango 2\sqrt{22} mai i -8.
x=-\sqrt{22}-4
Whakawehe -8-2\sqrt{22} ki te 2.
x^{2}+8x-6=\left(x-\left(\sqrt{22}-4\right)\right)\left(x-\left(-\sqrt{22}-4\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -4+\sqrt{22} mō te x_{1} me te -4-\sqrt{22} mō te x_{2}.