Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+4x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\times 3\left(-1\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 4 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 3\left(-1\right)}}{2\times 3}
Pūrua 4.
x=\frac{-4±\sqrt{16-12\left(-1\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-4±\sqrt{16+12}}{2\times 3}
Whakareatia -12 ki te -1.
x=\frac{-4±\sqrt{28}}{2\times 3}
Tāpiri 16 ki te 12.
x=\frac{-4±2\sqrt{7}}{2\times 3}
Tuhia te pūtakerua o te 28.
x=\frac{-4±2\sqrt{7}}{6}
Whakareatia 2 ki te 3.
x=\frac{2\sqrt{7}-4}{6}
Nā, me whakaoti te whārite x=\frac{-4±2\sqrt{7}}{6} ina he tāpiri te ±. Tāpiri -4 ki te 2\sqrt{7}.
x=\frac{\sqrt{7}-2}{3}
Whakawehe -4+2\sqrt{7} ki te 6.
x=\frac{-2\sqrt{7}-4}{6}
Nā, me whakaoti te whārite x=\frac{-4±2\sqrt{7}}{6} ina he tango te ±. Tango 2\sqrt{7} mai i -4.
x=\frac{-\sqrt{7}-2}{3}
Whakawehe -4-2\sqrt{7} ki te 6.
x=\frac{\sqrt{7}-2}{3} x=\frac{-\sqrt{7}-2}{3}
Kua oti te whārite te whakatau.
3x^{2}+4x-1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+4x-1-\left(-1\right)=-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
3x^{2}+4x=-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
3x^{2}+4x=1
Tango -1 mai i 0.
\frac{3x^{2}+4x}{3}=\frac{1}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{4}{3}x=\frac{1}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\frac{1}{3}+\left(\frac{2}{3}\right)^{2}
Whakawehea te \frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{2}{3}. Nā, tāpiria te pūrua o te \frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{1}{3}+\frac{4}{9}
Pūruatia \frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{7}{9}
Tāpiri \frac{1}{3} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{2}{3}\right)^{2}=\frac{7}{9}
Tauwehea x^{2}+\frac{4}{3}x+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{7}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{2}{3}=\frac{\sqrt{7}}{3} x+\frac{2}{3}=-\frac{\sqrt{7}}{3}
Whakarūnātia.
x=\frac{\sqrt{7}-2}{3} x=\frac{-\sqrt{7}-2}{3}
Me tango \frac{2}{3} mai i ngā taha e rua o te whārite.