Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+4-436=0
Tangohia te 436 mai i ngā taha e rua.
3x^{2}-432=0
Tangohia te 436 i te 4, ka -432.
x^{2}-144=0
Whakawehea ngā taha e rua ki te 3.
\left(x-12\right)\left(x+12\right)=0
Whakaarohia te x^{2}-144. Tuhia anō te x^{2}-144 hei x^{2}-12^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=12 x=-12
Hei kimi otinga whārite, me whakaoti te x-12=0 me te x+12=0.
3x^{2}=436-4
Tangohia te 4 mai i ngā taha e rua.
3x^{2}=432
Tangohia te 4 i te 436, ka 432.
x^{2}=\frac{432}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=144
Whakawehea te 432 ki te 3, kia riro ko 144.
x=12 x=-12
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3x^{2}+4-436=0
Tangohia te 436 mai i ngā taha e rua.
3x^{2}-432=0
Tangohia te 436 i te 4, ka -432.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-432\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -432 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-432\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-432\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{5184}}{2\times 3}
Whakareatia -12 ki te -432.
x=\frac{0±72}{2\times 3}
Tuhia te pūtakerua o te 5184.
x=\frac{0±72}{6}
Whakareatia 2 ki te 3.
x=12
Nā, me whakaoti te whārite x=\frac{0±72}{6} ina he tāpiri te ±. Whakawehe 72 ki te 6.
x=-12
Nā, me whakaoti te whārite x=\frac{0±72}{6} ina he tango te ±. Whakawehe -72 ki te 6.
x=12 x=-12
Kua oti te whārite te whakatau.