Whakaoti mō x
x=-9
x=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+12x+27=0
Whakawehea ngā taha e rua ki te 3.
a+b=12 ab=1\times 27=27
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+27. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,27 3,9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 27.
1+27=28 3+9=12
Tātaihia te tapeke mō ia takirua.
a=3 b=9
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(x^{2}+3x\right)+\left(9x+27\right)
Tuhia anō te x^{2}+12x+27 hei \left(x^{2}+3x\right)+\left(9x+27\right).
x\left(x+3\right)+9\left(x+3\right)
Tauwehea te x i te tuatahi me te 9 i te rōpū tuarua.
\left(x+3\right)\left(x+9\right)
Whakatauwehea atu te kīanga pātahi x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-3 x=-9
Hei kimi otinga whārite, me whakaoti te x+3=0 me te x+9=0.
3x^{2}+36x+81=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-36±\sqrt{36^{2}-4\times 3\times 81}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 36 mō b, me 81 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\times 3\times 81}}{2\times 3}
Pūrua 36.
x=\frac{-36±\sqrt{1296-12\times 81}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-36±\sqrt{1296-972}}{2\times 3}
Whakareatia -12 ki te 81.
x=\frac{-36±\sqrt{324}}{2\times 3}
Tāpiri 1296 ki te -972.
x=\frac{-36±18}{2\times 3}
Tuhia te pūtakerua o te 324.
x=\frac{-36±18}{6}
Whakareatia 2 ki te 3.
x=-\frac{18}{6}
Nā, me whakaoti te whārite x=\frac{-36±18}{6} ina he tāpiri te ±. Tāpiri -36 ki te 18.
x=-3
Whakawehe -18 ki te 6.
x=-\frac{54}{6}
Nā, me whakaoti te whārite x=\frac{-36±18}{6} ina he tango te ±. Tango 18 mai i -36.
x=-9
Whakawehe -54 ki te 6.
x=-3 x=-9
Kua oti te whārite te whakatau.
3x^{2}+36x+81=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+36x+81-81=-81
Me tango 81 mai i ngā taha e rua o te whārite.
3x^{2}+36x=-81
Mā te tango i te 81 i a ia ake anō ka toe ko te 0.
\frac{3x^{2}+36x}{3}=-\frac{81}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{36}{3}x=-\frac{81}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+12x=-\frac{81}{3}
Whakawehe 36 ki te 3.
x^{2}+12x=-27
Whakawehe -81 ki te 3.
x^{2}+12x+6^{2}=-27+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+12x+36=-27+36
Pūrua 6.
x^{2}+12x+36=9
Tāpiri -27 ki te 36.
\left(x+6\right)^{2}=9
Tauwehea x^{2}+12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+6=3 x+6=-3
Whakarūnātia.
x=-3 x=-9
Me tango 6 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}