Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+3x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\times 3\left(-2\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 3 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 3\left(-2\right)}}{2\times 3}
Pūrua 3.
x=\frac{-3±\sqrt{9-12\left(-2\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-3±\sqrt{9+24}}{2\times 3}
Whakareatia -12 ki te -2.
x=\frac{-3±\sqrt{33}}{2\times 3}
Tāpiri 9 ki te 24.
x=\frac{-3±\sqrt{33}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{33}-3}{6}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{33}}{6} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{33}.
x=\frac{\sqrt{33}}{6}-\frac{1}{2}
Whakawehe -3+\sqrt{33} ki te 6.
x=\frac{-\sqrt{33}-3}{6}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{33}}{6} ina he tango te ±. Tango \sqrt{33} mai i -3.
x=-\frac{\sqrt{33}}{6}-\frac{1}{2}
Whakawehe -3-\sqrt{33} ki te 6.
x=\frac{\sqrt{33}}{6}-\frac{1}{2} x=-\frac{\sqrt{33}}{6}-\frac{1}{2}
Kua oti te whārite te whakatau.
3x^{2}+3x-2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+3x-2-\left(-2\right)=-\left(-2\right)
Me tāpiri 2 ki ngā taha e rua o te whārite.
3x^{2}+3x=-\left(-2\right)
Mā te tango i te -2 i a ia ake anō ka toe ko te 0.
3x^{2}+3x=2
Tango -2 mai i 0.
\frac{3x^{2}+3x}{3}=\frac{2}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{3}{3}x=\frac{2}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+x=\frac{2}{3}
Whakawehe 3 ki te 3.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{2}{3}+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=\frac{2}{3}+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=\frac{11}{12}
Tāpiri \frac{2}{3} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{2}\right)^{2}=\frac{11}{12}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{11}{12}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{\sqrt{33}}{6} x+\frac{1}{2}=-\frac{\sqrt{33}}{6}
Whakarūnātia.
x=\frac{\sqrt{33}}{6}-\frac{1}{2} x=-\frac{\sqrt{33}}{6}-\frac{1}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.