Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=23 ab=3\left(-8\right)=-24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,24 -2,12 -3,8 -4,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Tātaihia te tapeke mō ia takirua.
a=-1 b=24
Ko te otinga te takirua ka hoatu i te tapeke 23.
\left(3x^{2}-x\right)+\left(24x-8\right)
Tuhia anō te 3x^{2}+23x-8 hei \left(3x^{2}-x\right)+\left(24x-8\right).
x\left(3x-1\right)+8\left(3x-1\right)
Tauwehea te x i te tuatahi me te 8 i te rōpū tuarua.
\left(3x-1\right)\left(x+8\right)
Whakatauwehea atu te kīanga pātahi 3x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{3} x=-8
Hei kimi otinga whārite, me whakaoti te 3x-1=0 me te x+8=0.
3x^{2}+23x-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-23±\sqrt{23^{2}-4\times 3\left(-8\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 23 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-23±\sqrt{529-4\times 3\left(-8\right)}}{2\times 3}
Pūrua 23.
x=\frac{-23±\sqrt{529-12\left(-8\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-23±\sqrt{529+96}}{2\times 3}
Whakareatia -12 ki te -8.
x=\frac{-23±\sqrt{625}}{2\times 3}
Tāpiri 529 ki te 96.
x=\frac{-23±25}{2\times 3}
Tuhia te pūtakerua o te 625.
x=\frac{-23±25}{6}
Whakareatia 2 ki te 3.
x=\frac{2}{6}
Nā, me whakaoti te whārite x=\frac{-23±25}{6} ina he tāpiri te ±. Tāpiri -23 ki te 25.
x=\frac{1}{3}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{48}{6}
Nā, me whakaoti te whārite x=\frac{-23±25}{6} ina he tango te ±. Tango 25 mai i -23.
x=-8
Whakawehe -48 ki te 6.
x=\frac{1}{3} x=-8
Kua oti te whārite te whakatau.
3x^{2}+23x-8=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+23x-8-\left(-8\right)=-\left(-8\right)
Me tāpiri 8 ki ngā taha e rua o te whārite.
3x^{2}+23x=-\left(-8\right)
Mā te tango i te -8 i a ia ake anō ka toe ko te 0.
3x^{2}+23x=8
Tango -8 mai i 0.
\frac{3x^{2}+23x}{3}=\frac{8}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{23}{3}x=\frac{8}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{23}{3}x+\left(\frac{23}{6}\right)^{2}=\frac{8}{3}+\left(\frac{23}{6}\right)^{2}
Whakawehea te \frac{23}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{23}{6}. Nā, tāpiria te pūrua o te \frac{23}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{23}{3}x+\frac{529}{36}=\frac{8}{3}+\frac{529}{36}
Pūruatia \frac{23}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{23}{3}x+\frac{529}{36}=\frac{625}{36}
Tāpiri \frac{8}{3} ki te \frac{529}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{23}{6}\right)^{2}=\frac{625}{36}
Tauwehea x^{2}+\frac{23}{3}x+\frac{529}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{23}{6}\right)^{2}}=\sqrt{\frac{625}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{23}{6}=\frac{25}{6} x+\frac{23}{6}=-\frac{25}{6}
Whakarūnātia.
x=\frac{1}{3} x=-8
Me tango \frac{23}{6} mai i ngā taha e rua o te whārite.