Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=16 ab=3\left(-35\right)=-105
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-35. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,105 -3,35 -5,21 -7,15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -105.
-1+105=104 -3+35=32 -5+21=16 -7+15=8
Tātaihia te tapeke mō ia takirua.
a=-5 b=21
Ko te otinga te takirua ka hoatu i te tapeke 16.
\left(3x^{2}-5x\right)+\left(21x-35\right)
Tuhia anō te 3x^{2}+16x-35 hei \left(3x^{2}-5x\right)+\left(21x-35\right).
x\left(3x-5\right)+7\left(3x-5\right)
Tauwehea te x i te tuatahi me te 7 i te rōpū tuarua.
\left(3x-5\right)\left(x+7\right)
Whakatauwehea atu te kīanga pātahi 3x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{5}{3} x=-7
Hei kimi otinga whārite, me whakaoti te 3x-5=0 me te x+7=0.
3x^{2}+16x-35=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-16±\sqrt{16^{2}-4\times 3\left(-35\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 16 mō b, me -35 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 3\left(-35\right)}}{2\times 3}
Pūrua 16.
x=\frac{-16±\sqrt{256-12\left(-35\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-16±\sqrt{256+420}}{2\times 3}
Whakareatia -12 ki te -35.
x=\frac{-16±\sqrt{676}}{2\times 3}
Tāpiri 256 ki te 420.
x=\frac{-16±26}{2\times 3}
Tuhia te pūtakerua o te 676.
x=\frac{-16±26}{6}
Whakareatia 2 ki te 3.
x=\frac{10}{6}
Nā, me whakaoti te whārite x=\frac{-16±26}{6} ina he tāpiri te ±. Tāpiri -16 ki te 26.
x=\frac{5}{3}
Whakahekea te hautanga \frac{10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{42}{6}
Nā, me whakaoti te whārite x=\frac{-16±26}{6} ina he tango te ±. Tango 26 mai i -16.
x=-7
Whakawehe -42 ki te 6.
x=\frac{5}{3} x=-7
Kua oti te whārite te whakatau.
3x^{2}+16x-35=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+16x-35-\left(-35\right)=-\left(-35\right)
Me tāpiri 35 ki ngā taha e rua o te whārite.
3x^{2}+16x=-\left(-35\right)
Mā te tango i te -35 i a ia ake anō ka toe ko te 0.
3x^{2}+16x=35
Tango -35 mai i 0.
\frac{3x^{2}+16x}{3}=\frac{35}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{16}{3}x=\frac{35}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{16}{3}x+\left(\frac{8}{3}\right)^{2}=\frac{35}{3}+\left(\frac{8}{3}\right)^{2}
Whakawehea te \frac{16}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{8}{3}. Nā, tāpiria te pūrua o te \frac{8}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{16}{3}x+\frac{64}{9}=\frac{35}{3}+\frac{64}{9}
Pūruatia \frac{8}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{16}{3}x+\frac{64}{9}=\frac{169}{9}
Tāpiri \frac{35}{3} ki te \frac{64}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{8}{3}\right)^{2}=\frac{169}{9}
Tauwehea x^{2}+\frac{16}{3}x+\frac{64}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{3}\right)^{2}}=\sqrt{\frac{169}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{8}{3}=\frac{13}{3} x+\frac{8}{3}=-\frac{13}{3}
Whakarūnātia.
x=\frac{5}{3} x=-7
Me tango \frac{8}{3} mai i ngā taha e rua o te whārite.