Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=16 ab=3\left(-12\right)=-36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,36 -2,18 -3,12 -4,9 -6,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Tātaihia te tapeke mō ia takirua.
a=-2 b=18
Ko te otinga te takirua ka hoatu i te tapeke 16.
\left(3x^{2}-2x\right)+\left(18x-12\right)
Tuhia anō te 3x^{2}+16x-12 hei \left(3x^{2}-2x\right)+\left(18x-12\right).
x\left(3x-2\right)+6\left(3x-2\right)
Tauwehea te x i te tuatahi me te 6 i te rōpū tuarua.
\left(3x-2\right)\left(x+6\right)
Whakatauwehea atu te kīanga pātahi 3x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{2}{3} x=-6
Hei kimi otinga whārite, me whakaoti te 3x-2=0 me te x+6=0.
3x^{2}+16x-12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-16±\sqrt{16^{2}-4\times 3\left(-12\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 16 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 3\left(-12\right)}}{2\times 3}
Pūrua 16.
x=\frac{-16±\sqrt{256-12\left(-12\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-16±\sqrt{256+144}}{2\times 3}
Whakareatia -12 ki te -12.
x=\frac{-16±\sqrt{400}}{2\times 3}
Tāpiri 256 ki te 144.
x=\frac{-16±20}{2\times 3}
Tuhia te pūtakerua o te 400.
x=\frac{-16±20}{6}
Whakareatia 2 ki te 3.
x=\frac{4}{6}
Nā, me whakaoti te whārite x=\frac{-16±20}{6} ina he tāpiri te ±. Tāpiri -16 ki te 20.
x=\frac{2}{3}
Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{36}{6}
Nā, me whakaoti te whārite x=\frac{-16±20}{6} ina he tango te ±. Tango 20 mai i -16.
x=-6
Whakawehe -36 ki te 6.
x=\frac{2}{3} x=-6
Kua oti te whārite te whakatau.
3x^{2}+16x-12=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+16x-12-\left(-12\right)=-\left(-12\right)
Me tāpiri 12 ki ngā taha e rua o te whārite.
3x^{2}+16x=-\left(-12\right)
Mā te tango i te -12 i a ia ake anō ka toe ko te 0.
3x^{2}+16x=12
Tango -12 mai i 0.
\frac{3x^{2}+16x}{3}=\frac{12}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{16}{3}x=\frac{12}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{16}{3}x=4
Whakawehe 12 ki te 3.
x^{2}+\frac{16}{3}x+\left(\frac{8}{3}\right)^{2}=4+\left(\frac{8}{3}\right)^{2}
Whakawehea te \frac{16}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{8}{3}. Nā, tāpiria te pūrua o te \frac{8}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{16}{3}x+\frac{64}{9}=4+\frac{64}{9}
Pūruatia \frac{8}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{16}{3}x+\frac{64}{9}=\frac{100}{9}
Tāpiri 4 ki te \frac{64}{9}.
\left(x+\frac{8}{3}\right)^{2}=\frac{100}{9}
Tauwehea x^{2}+\frac{16}{3}x+\frac{64}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{3}\right)^{2}}=\sqrt{\frac{100}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{8}{3}=\frac{10}{3} x+\frac{8}{3}=-\frac{10}{3}
Whakarūnātia.
x=\frac{2}{3} x=-6
Me tango \frac{8}{3} mai i ngā taha e rua o te whārite.