Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+11x+4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-11±\sqrt{11^{2}-4\times 3\times 4}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-11±\sqrt{121-4\times 3\times 4}}{2\times 3}
Pūrua 11.
x=\frac{-11±\sqrt{121-12\times 4}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-11±\sqrt{121-48}}{2\times 3}
Whakareatia -12 ki te 4.
x=\frac{-11±\sqrt{73}}{2\times 3}
Tāpiri 121 ki te -48.
x=\frac{-11±\sqrt{73}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{73}-11}{6}
Nā, me whakaoti te whārite x=\frac{-11±\sqrt{73}}{6} ina he tāpiri te ±. Tāpiri -11 ki te \sqrt{73}.
x=\frac{-\sqrt{73}-11}{6}
Nā, me whakaoti te whārite x=\frac{-11±\sqrt{73}}{6} ina he tango te ±. Tango \sqrt{73} mai i -11.
3x^{2}+11x+4=3\left(x-\frac{\sqrt{73}-11}{6}\right)\left(x-\frac{-\sqrt{73}-11}{6}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-11+\sqrt{73}}{6} mō te x_{1} me te \frac{-11-\sqrt{73}}{6} mō te x_{2}.