Whakaoti mō x
x=\sqrt{163}-3\approx 9.767145335
x=-\left(\sqrt{163}+3\right)\approx -15.767145335
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}+10x-1-2x^{2}=4x+153
Tangohia te 2x^{2} mai i ngā taha e rua.
x^{2}+10x-1=4x+153
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
x^{2}+10x-1-4x=153
Tangohia te 4x mai i ngā taha e rua.
x^{2}+6x-1=153
Pahekotia te 10x me -4x, ka 6x.
x^{2}+6x-1-153=0
Tangohia te 153 mai i ngā taha e rua.
x^{2}+6x-154=0
Tangohia te 153 i te -1, ka -154.
x=\frac{-6±\sqrt{6^{2}-4\left(-154\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 6 mō b, me -154 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-154\right)}}{2}
Pūrua 6.
x=\frac{-6±\sqrt{36+616}}{2}
Whakareatia -4 ki te -154.
x=\frac{-6±\sqrt{652}}{2}
Tāpiri 36 ki te 616.
x=\frac{-6±2\sqrt{163}}{2}
Tuhia te pūtakerua o te 652.
x=\frac{2\sqrt{163}-6}{2}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{163}}{2} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{163}.
x=\sqrt{163}-3
Whakawehe -6+2\sqrt{163} ki te 2.
x=\frac{-2\sqrt{163}-6}{2}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{163}}{2} ina he tango te ±. Tango 2\sqrt{163} mai i -6.
x=-\sqrt{163}-3
Whakawehe -6-2\sqrt{163} ki te 2.
x=\sqrt{163}-3 x=-\sqrt{163}-3
Kua oti te whārite te whakatau.
3x^{2}+10x-1-2x^{2}=4x+153
Tangohia te 2x^{2} mai i ngā taha e rua.
x^{2}+10x-1=4x+153
Pahekotia te 3x^{2} me -2x^{2}, ka x^{2}.
x^{2}+10x-1-4x=153
Tangohia te 4x mai i ngā taha e rua.
x^{2}+6x-1=153
Pahekotia te 10x me -4x, ka 6x.
x^{2}+6x=153+1
Me tāpiri te 1 ki ngā taha e rua.
x^{2}+6x=154
Tāpirihia te 153 ki te 1, ka 154.
x^{2}+6x+3^{2}=154+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+6x+9=154+9
Pūrua 3.
x^{2}+6x+9=163
Tāpiri 154 ki te 9.
\left(x+3\right)^{2}=163
Tauwehea x^{2}+6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{163}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=\sqrt{163} x+3=-\sqrt{163}
Whakarūnātia.
x=\sqrt{163}-3 x=-\sqrt{163}-3
Me tango 3 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}