Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(3x\right)^{2}=\left(5\sqrt{x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
3^{2}x^{2}=\left(5\sqrt{x}\right)^{2}
Whakarohaina te \left(3x\right)^{2}.
9x^{2}=\left(5\sqrt{x}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9x^{2}=5^{2}\left(\sqrt{x}\right)^{2}
Whakarohaina te \left(5\sqrt{x}\right)^{2}.
9x^{2}=25\left(\sqrt{x}\right)^{2}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
9x^{2}=25x
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
9x^{2}-25x=0
Tangohia te 25x mai i ngā taha e rua.
x\left(9x-25\right)=0
Tauwehea te x.
x=0 x=\frac{25}{9}
Hei kimi otinga whārite, me whakaoti te x=0 me te 9x-25=0.
3\times 0=5\sqrt{0}
Whakakapia te 0 mō te x i te whārite 3x=5\sqrt{x}.
0=0
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
3\times \frac{25}{9}=5\sqrt{\frac{25}{9}}
Whakakapia te \frac{25}{9} mō te x i te whārite 3x=5\sqrt{x}.
\frac{25}{3}=\frac{25}{3}
Whakarūnātia. Ko te uara x=\frac{25}{9} kua ngata te whārite.
x=0 x=\frac{25}{9}
Rārangihia ngā rongoā katoa o 3x=5\sqrt{x}.