Whakaoti mō x
x=0
x = \frac{25}{9} = 2\frac{7}{9} \approx 2.777777778
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(3x\right)^{2}=\left(5\sqrt{x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
3^{2}x^{2}=\left(5\sqrt{x}\right)^{2}
Whakarohaina te \left(3x\right)^{2}.
9x^{2}=\left(5\sqrt{x}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9x^{2}=5^{2}\left(\sqrt{x}\right)^{2}
Whakarohaina te \left(5\sqrt{x}\right)^{2}.
9x^{2}=25\left(\sqrt{x}\right)^{2}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
9x^{2}=25x
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
9x^{2}-25x=0
Tangohia te 25x mai i ngā taha e rua.
x\left(9x-25\right)=0
Tauwehea te x.
x=0 x=\frac{25}{9}
Hei kimi otinga whārite, me whakaoti te x=0 me te 9x-25=0.
3\times 0=5\sqrt{0}
Whakakapia te 0 mō te x i te whārite 3x=5\sqrt{x}.
0=0
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
3\times \frac{25}{9}=5\sqrt{\frac{25}{9}}
Whakakapia te \frac{25}{9} mō te x i te whārite 3x=5\sqrt{x}.
\frac{25}{3}=\frac{25}{3}
Whakarūnātia. Ko te uara x=\frac{25}{9} kua ngata te whārite.
x=0 x=\frac{25}{9}
Rārangihia ngā rongoā katoa o 3x=5\sqrt{x}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}