Whakaoti mō m
m=-\frac{4-5x}{1-2x}
x\neq \frac{1}{2}
Whakaoti mō x
x=\frac{m+4}{2m+5}
m\neq -\frac{5}{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x=2xm+8x-m-4
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-1 ki te m+4.
2xm+8x-m-4=3x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2xm-m-4=3x-8x
Tangohia te 8x mai i ngā taha e rua.
2xm-m-4=-5x
Pahekotia te 3x me -8x, ka -5x.
2xm-m=-5x+4
Me tāpiri te 4 ki ngā taha e rua.
\left(2x-1\right)m=-5x+4
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(2x-1\right)m=4-5x
He hanga arowhānui tō te whārite.
\frac{\left(2x-1\right)m}{2x-1}=\frac{4-5x}{2x-1}
Whakawehea ngā taha e rua ki te 2x-1.
m=\frac{4-5x}{2x-1}
Mā te whakawehe ki te 2x-1 ka wetekia te whakareanga ki te 2x-1.
3x=2xm+8x-m-4
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-1 ki te m+4.
3x-2xm=8x-m-4
Tangohia te 2xm mai i ngā taha e rua.
3x-2xm-8x=-m-4
Tangohia te 8x mai i ngā taha e rua.
-5x-2xm=-m-4
Pahekotia te 3x me -8x, ka -5x.
\left(-5-2m\right)x=-m-4
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(-2m-5\right)x=-m-4
He hanga arowhānui tō te whārite.
\frac{\left(-2m-5\right)x}{-2m-5}=\frac{-m-4}{-2m-5}
Whakawehea ngā taha e rua ki te -5-2m.
x=\frac{-m-4}{-2m-5}
Mā te whakawehe ki te -5-2m ka wetekia te whakareanga ki te -5-2m.
x=\frac{m+4}{2m+5}
Whakawehe -m-4 ki te -5-2m.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}