Whakaoti mō x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(3x\right)^{2}=\left(\sqrt{8+6x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
3^{2}x^{2}=\left(\sqrt{8+6x}\right)^{2}
Whakarohaina te \left(3x\right)^{2}.
9x^{2}=\left(\sqrt{8+6x}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9x^{2}=8+6x
Tātaihia te \sqrt{8+6x} mā te pū o 2, kia riro ko 8+6x.
9x^{2}-8=6x
Tangohia te 8 mai i ngā taha e rua.
9x^{2}-8-6x=0
Tangohia te 6x mai i ngā taha e rua.
9x^{2}-6x-8=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-6 ab=9\left(-8\right)=-72
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 9x^{2}+ax+bx-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -72.
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
Tātaihia te tapeke mō ia takirua.
a=-12 b=6
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(9x^{2}-12x\right)+\left(6x-8\right)
Tuhia anō te 9x^{2}-6x-8 hei \left(9x^{2}-12x\right)+\left(6x-8\right).
3x\left(3x-4\right)+2\left(3x-4\right)
Tauwehea te 3x i te tuatahi me te 2 i te rōpū tuarua.
\left(3x-4\right)\left(3x+2\right)
Whakatauwehea atu te kīanga pātahi 3x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{4}{3} x=-\frac{2}{3}
Hei kimi otinga whārite, me whakaoti te 3x-4=0 me te 3x+2=0.
3\times \frac{4}{3}=\sqrt{8+6\times \frac{4}{3}}
Whakakapia te \frac{4}{3} mō te x i te whārite 3x=\sqrt{8+6x}.
4=4
Whakarūnātia. Ko te uara x=\frac{4}{3} kua ngata te whārite.
3\left(-\frac{2}{3}\right)=\sqrt{8+6\left(-\frac{2}{3}\right)}
Whakakapia te -\frac{2}{3} mō te x i te whārite 3x=\sqrt{8+6x}.
-2=2
Whakarūnātia. Ko te uara x=-\frac{2}{3} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=\frac{4}{3}
Ko te whārite 3x=\sqrt{6x+8} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}