Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+9-6y=0
Whakaarohia te whārite tuatahi. Tangohia te 6y mai i ngā taha e rua.
3x-6y=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2x-2y=12
Whakaarohia te whārite tuarua. Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3x-6y=-9,-2x-2y=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-6y=-9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=6y-9
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(6y-9\right)
Whakawehea ngā taha e rua ki te 3.
x=2y-3
Whakareatia \frac{1}{3} ki te 6y-9.
-2\left(2y-3\right)-2y=12
Whakakapia te 2y-3 mō te x ki tērā atu whārite, -2x-2y=12.
-4y+6-2y=12
Whakareatia -2 ki te 2y-3.
-6y+6=12
Tāpiri -4y ki te -2y.
-6y=6
Me tango 6 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te -6.
x=2\left(-1\right)-3
Whakaurua te -1 mō y ki x=2y-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2-3
Whakareatia 2 ki te -1.
x=-5
Tāpiri -3 ki te -2.
x=-5,y=-1
Kua oti te pūnaha te whakatau.
3x+9-6y=0
Whakaarohia te whārite tuatahi. Tangohia te 6y mai i ngā taha e rua.
3x-6y=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2x-2y=12
Whakaarohia te whārite tuarua. Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3x-6y=-9,-2x-2y=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right))\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right))\left(\begin{matrix}-9\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right))\left(\begin{matrix}-9\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\-2&-2\end{matrix}\right))\left(\begin{matrix}-9\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-6\left(-2\right)\right)}&-\frac{-6}{3\left(-2\right)-\left(-6\left(-2\right)\right)}\\-\frac{-2}{3\left(-2\right)-\left(-6\left(-2\right)\right)}&\frac{3}{3\left(-2\right)-\left(-6\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-9\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&-\frac{1}{3}\\-\frac{1}{9}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-9\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\left(-9\right)-\frac{1}{3}\times 12\\-\frac{1}{9}\left(-9\right)-\frac{1}{6}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-5,y=-1
Tangohia ngā huānga poukapa x me y.
3x+9-6y=0
Whakaarohia te whārite tuatahi. Tangohia te 6y mai i ngā taha e rua.
3x-6y=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2x-2y=12
Whakaarohia te whārite tuarua. Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3x-6y=-9,-2x-2y=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 3x-2\left(-6\right)y=-2\left(-9\right),3\left(-2\right)x+3\left(-2\right)y=3\times 12
Kia ōrite ai a 3x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-6x+12y=18,-6x-6y=36
Whakarūnātia.
-6x+6x+12y+6y=18-36
Me tango -6x-6y=36 mai i -6x+12y=18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12y+6y=18-36
Tāpiri -6x ki te 6x. Ka whakakore atu ngā kupu -6x me 6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
18y=18-36
Tāpiri 12y ki te 6y.
18y=-18
Tāpiri 18 ki te -36.
y=-1
Whakawehea ngā taha e rua ki te 18.
-2x-2\left(-1\right)=12
Whakaurua te -1 mō y ki -2x-2y=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x+2=12
Whakareatia -2 ki te -1.
-2x=10
Me tango 2 mai i ngā taha e rua o te whārite.
x=-5
Whakawehea ngā taha e rua ki te -2.
x=-5,y=-1
Kua oti te pūnaha te whakatau.