Whakaoti mō x
x = -\frac{31}{9} = -3\frac{4}{9} \approx -3.444444444
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+9=-\frac{4}{3}
Whakahekea te hautanga \frac{12}{-9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
3x=-\frac{4}{3}-9
Tangohia te 9 mai i ngā taha e rua.
3x=-\frac{4}{3}-\frac{27}{3}
Me tahuri te 9 ki te hautau \frac{27}{3}.
3x=\frac{-4-27}{3}
Tā te mea he rite te tauraro o -\frac{4}{3} me \frac{27}{3}, me tango rāua mā te tango i ō raua taurunga.
3x=-\frac{31}{3}
Tangohia te 27 i te -4, ka -31.
x=\frac{-\frac{31}{3}}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{-31}{3\times 3}
Tuhia te \frac{-\frac{31}{3}}{3} hei hautanga kotahi.
x=\frac{-31}{9}
Whakareatia te 3 ki te 3, ka 9.
x=-\frac{31}{9}
Ka taea te hautanga \frac{-31}{9} te tuhi anō ko -\frac{31}{9} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}