Whakaoti mō x
x=-y-\frac{14}{3}
Whakaoti mō y
y=-x-\frac{14}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+4y=y-5-9
Tangohia te 9 mai i ngā taha e rua.
3x+4y=y-14
Tangohia te 9 i te -5, ka -14.
3x=y-14-4y
Tangohia te 4y mai i ngā taha e rua.
3x=-3y-14
Pahekotia te y me -4y, ka -3y.
\frac{3x}{3}=\frac{-3y-14}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{-3y-14}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x=-y-\frac{14}{3}
Whakawehe -3y-14 ki te 3.
3x+9+4y-y=-5
Tangohia te y mai i ngā taha e rua.
3x+9+3y=-5
Pahekotia te 4y me -y, ka 3y.
9+3y=-5-3x
Tangohia te 3x mai i ngā taha e rua.
3y=-5-3x-9
Tangohia te 9 mai i ngā taha e rua.
3y=-14-3x
Tangohia te 9 i te -5, ka -14.
3y=-3x-14
He hanga arowhānui tō te whārite.
\frac{3y}{3}=\frac{-3x-14}{3}
Whakawehea ngā taha e rua ki te 3.
y=\frac{-3x-14}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
y=-x-\frac{14}{3}
Whakawehe -14-3x ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}