Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+5y=8,x-2y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+5y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-5y+8
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-5y+8\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{5}{3}y+\frac{8}{3}
Whakareatia \frac{1}{3} ki te -5y+8.
-\frac{5}{3}y+\frac{8}{3}-2y=-1
Whakakapia te \frac{-5y+8}{3} mō te x ki tērā atu whārite, x-2y=-1.
-\frac{11}{3}y+\frac{8}{3}=-1
Tāpiri -\frac{5y}{3} ki te -2y.
-\frac{11}{3}y=-\frac{11}{3}
Me tango \frac{8}{3} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{11}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{-5+8}{3}
Whakaurua te 1 mō y ki x=-\frac{5}{3}y+\frac{8}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Tāpiri \frac{8}{3} ki te -\frac{5}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=1
Kua oti te pūnaha te whakatau.
3x+5y=8,x-2y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&5\\1&-2\end{matrix}\right))\left(\begin{matrix}3&5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&5\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-5}&-\frac{5}{3\left(-2\right)-5}\\-\frac{1}{3\left(-2\right)-5}&\frac{3}{3\left(-2\right)-5}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{5}{11}\\\frac{1}{11}&-\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 8+\frac{5}{11}\left(-1\right)\\\frac{1}{11}\times 8-\frac{3}{11}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=1
Tangohia ngā huānga poukapa x me y.
3x+5y=8,x-2y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+5y=8,3x+3\left(-2\right)y=3\left(-1\right)
Kia ōrite ai a 3x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3x+5y=8,3x-6y=-3
Whakarūnātia.
3x-3x+5y+6y=8+3
Me tango 3x-6y=-3 mai i 3x+5y=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5y+6y=8+3
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=8+3
Tāpiri 5y ki te 6y.
11y=11
Tāpiri 8 ki te 3.
y=1
Whakawehea ngā taha e rua ki te 11.
x-2=-1
Whakaurua te 1 mō y ki x-2y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=1,y=1
Kua oti te pūnaha te whakatau.