Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+5-x^{2}=1
Tangohia te x^{2} mai i ngā taha e rua.
3x+5-x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
3x+4-x^{2}=0
Tangohia te 1 i te 5, ka 4.
-x^{2}+3x+4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=3 ab=-4=-4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,4 -2,2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
-1+4=3 -2+2=0
Tātaihia te tapeke mō ia takirua.
a=4 b=-1
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(-x^{2}+4x\right)+\left(-x+4\right)
Tuhia anō te -x^{2}+3x+4 hei \left(-x^{2}+4x\right)+\left(-x+4\right).
-x\left(x-4\right)-\left(x-4\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-4\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=-1
Hei kimi otinga whārite, me whakaoti te x-4=0 me te -x-1=0.
3x+5-x^{2}=1
Tangohia te x^{2} mai i ngā taha e rua.
3x+5-x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
3x+4-x^{2}=0
Tangohia te 1 i te 5, ka 4.
-x^{2}+3x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 3 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 4}}{2\left(-1\right)}
Pūrua 3.
x=\frac{-3±\sqrt{9+4\times 4}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-3±\sqrt{9+16}}{2\left(-1\right)}
Whakareatia 4 ki te 4.
x=\frac{-3±\sqrt{25}}{2\left(-1\right)}
Tāpiri 9 ki te 16.
x=\frac{-3±5}{2\left(-1\right)}
Tuhia te pūtakerua o te 25.
x=\frac{-3±5}{-2}
Whakareatia 2 ki te -1.
x=\frac{2}{-2}
Nā, me whakaoti te whārite x=\frac{-3±5}{-2} ina he tāpiri te ±. Tāpiri -3 ki te 5.
x=-1
Whakawehe 2 ki te -2.
x=-\frac{8}{-2}
Nā, me whakaoti te whārite x=\frac{-3±5}{-2} ina he tango te ±. Tango 5 mai i -3.
x=4
Whakawehe -8 ki te -2.
x=-1 x=4
Kua oti te whārite te whakatau.
3x+5-x^{2}=1
Tangohia te x^{2} mai i ngā taha e rua.
3x-x^{2}=1-5
Tangohia te 5 mai i ngā taha e rua.
3x-x^{2}=-4
Tangohia te 5 i te 1, ka -4.
-x^{2}+3x=-4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+3x}{-1}=-\frac{4}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{3}{-1}x=-\frac{4}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-3x=-\frac{4}{-1}
Whakawehe 3 ki te -1.
x^{2}-3x=4
Whakawehe -4 ki te -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
Tāpiri 4 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
Whakarūnātia.
x=4 x=-1
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.