Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+2y=8,5x-4y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+2y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-2y+8
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-2y+8\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{2}{3}y+\frac{8}{3}
Whakareatia \frac{1}{3} ki te -2y+8.
5\left(-\frac{2}{3}y+\frac{8}{3}\right)-4y=6
Whakakapia te \frac{-2y+8}{3} mō te x ki tērā atu whārite, 5x-4y=6.
-\frac{10}{3}y+\frac{40}{3}-4y=6
Whakareatia 5 ki te \frac{-2y+8}{3}.
-\frac{22}{3}y+\frac{40}{3}=6
Tāpiri -\frac{10y}{3} ki te -4y.
-\frac{22}{3}y=-\frac{22}{3}
Me tango \frac{40}{3} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{22}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{-2+8}{3}
Whakaurua te 1 mō y ki x=-\frac{2}{3}y+\frac{8}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2
Tāpiri \frac{8}{3} ki te -\frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=1
Kua oti te pūnaha te whakatau.
3x+2y=8,5x-4y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}3&2\\5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\5&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3\left(-4\right)-2\times 5}&-\frac{2}{3\left(-4\right)-2\times 5}\\-\frac{5}{3\left(-4\right)-2\times 5}&\frac{3}{3\left(-4\right)-2\times 5}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{1}{11}\\\frac{5}{22}&-\frac{3}{22}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 8+\frac{1}{11}\times 6\\\frac{5}{22}\times 8-\frac{3}{22}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=1
Tangohia ngā huānga poukapa x me y.
3x+2y=8,5x-4y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 3x+5\times 2y=5\times 8,3\times 5x+3\left(-4\right)y=3\times 6
Kia ōrite ai a 3x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
15x+10y=40,15x-12y=18
Whakarūnātia.
15x-15x+10y+12y=40-18
Me tango 15x-12y=18 mai i 15x+10y=40 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10y+12y=40-18
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
22y=40-18
Tāpiri 10y ki te 12y.
22y=22
Tāpiri 40 ki te -18.
y=1
Whakawehea ngā taha e rua ki te 22.
5x-4=6
Whakaurua te 1 mō y ki 5x-4y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x=10
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 5.
x=2,y=1
Kua oti te pūnaha te whakatau.