Whakaoti mō x, y
x=2
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x-2y=12
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x+2y=12,9x-2y=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+2y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-2y+12
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-2y+12\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{2}{3}y+4
Whakareatia \frac{1}{3} ki te -2y+12.
9\left(-\frac{2}{3}y+4\right)-2y=12
Whakakapia te -\frac{2y}{3}+4 mō te x ki tērā atu whārite, 9x-2y=12.
-6y+36-2y=12
Whakareatia 9 ki te -\frac{2y}{3}+4.
-8y+36=12
Tāpiri -6y ki te -2y.
-8y=-24
Me tango 36 mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te -8.
x=-\frac{2}{3}\times 3+4
Whakaurua te 3 mō y ki x=-\frac{2}{3}y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2+4
Whakareatia -\frac{2}{3} ki te 3.
x=2
Tāpiri 4 ki te -2.
x=2,y=3
Kua oti te pūnaha te whakatau.
9x-2y=12
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x+2y=12,9x-2y=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\9&-2\end{matrix}\right))\left(\begin{matrix}3&2\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\9&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-2\times 9}&-\frac{2}{3\left(-2\right)-2\times 9}\\-\frac{9}{3\left(-2\right)-2\times 9}&\frac{3}{3\left(-2\right)-2\times 9}\end{matrix}\right)\left(\begin{matrix}12\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{12}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}12\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 12+\frac{1}{12}\times 12\\\frac{3}{8}\times 12-\frac{1}{8}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=3
Tangohia ngā huānga poukapa x me y.
9x-2y=12
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x+2y=12,9x-2y=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9\times 3x+9\times 2y=9\times 12,3\times 9x+3\left(-2\right)y=3\times 12
Kia ōrite ai a 3x me 9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
27x+18y=108,27x-6y=36
Whakarūnātia.
27x-27x+18y+6y=108-36
Me tango 27x-6y=36 mai i 27x+18y=108 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
18y+6y=108-36
Tāpiri 27x ki te -27x. Ka whakakore atu ngā kupu 27x me -27x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
24y=108-36
Tāpiri 18y ki te 6y.
24y=72
Tāpiri 108 ki te -36.
y=3
Whakawehea ngā taha e rua ki te 24.
9x-2\times 3=12
Whakaurua te 3 mō y ki 9x-2y=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
9x-6=12
Whakareatia -2 ki te 3.
9x=18
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 9.
x=2,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}