Whakaoti mō x
x=\frac{1-\sqrt{5}}{2}\approx -0.618033989
x = \frac{\sqrt{5} + 1}{2} \approx 1.618033989
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x\left(3x+2\right)+\left(3x+2\right)\times 2+1=7\left(3x+2\right)
Tē taea kia ōrite te tāupe x ki -\frac{2}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3x+2.
9x^{2}+6x+\left(3x+2\right)\times 2+1=7\left(3x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te 3x+2.
9x^{2}+6x+6x+4+1=7\left(3x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x+2 ki te 2.
9x^{2}+12x+4+1=7\left(3x+2\right)
Pahekotia te 6x me 6x, ka 12x.
9x^{2}+12x+5=7\left(3x+2\right)
Tāpirihia te 4 ki te 1, ka 5.
9x^{2}+12x+5=21x+14
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te 3x+2.
9x^{2}+12x+5-21x=14
Tangohia te 21x mai i ngā taha e rua.
9x^{2}-9x+5=14
Pahekotia te 12x me -21x, ka -9x.
9x^{2}-9x+5-14=0
Tangohia te 14 mai i ngā taha e rua.
9x^{2}-9x-9=0
Tangohia te 14 i te 5, ka -9.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 9\left(-9\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -9 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 9\left(-9\right)}}{2\times 9}
Pūrua -9.
x=\frac{-\left(-9\right)±\sqrt{81-36\left(-9\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-9\right)±\sqrt{81+324}}{2\times 9}
Whakareatia -36 ki te -9.
x=\frac{-\left(-9\right)±\sqrt{405}}{2\times 9}
Tāpiri 81 ki te 324.
x=\frac{-\left(-9\right)±9\sqrt{5}}{2\times 9}
Tuhia te pūtakerua o te 405.
x=\frac{9±9\sqrt{5}}{2\times 9}
Ko te tauaro o -9 ko 9.
x=\frac{9±9\sqrt{5}}{18}
Whakareatia 2 ki te 9.
x=\frac{9\sqrt{5}+9}{18}
Nā, me whakaoti te whārite x=\frac{9±9\sqrt{5}}{18} ina he tāpiri te ±. Tāpiri 9 ki te 9\sqrt{5}.
x=\frac{\sqrt{5}+1}{2}
Whakawehe 9+9\sqrt{5} ki te 18.
x=\frac{9-9\sqrt{5}}{18}
Nā, me whakaoti te whārite x=\frac{9±9\sqrt{5}}{18} ina he tango te ±. Tango 9\sqrt{5} mai i 9.
x=\frac{1-\sqrt{5}}{2}
Whakawehe 9-9\sqrt{5} ki te 18.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
Kua oti te whārite te whakatau.
3x\left(3x+2\right)+\left(3x+2\right)\times 2+1=7\left(3x+2\right)
Tē taea kia ōrite te tāupe x ki -\frac{2}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3x+2.
9x^{2}+6x+\left(3x+2\right)\times 2+1=7\left(3x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te 3x+2.
9x^{2}+6x+6x+4+1=7\left(3x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x+2 ki te 2.
9x^{2}+12x+4+1=7\left(3x+2\right)
Pahekotia te 6x me 6x, ka 12x.
9x^{2}+12x+5=7\left(3x+2\right)
Tāpirihia te 4 ki te 1, ka 5.
9x^{2}+12x+5=21x+14
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te 3x+2.
9x^{2}+12x+5-21x=14
Tangohia te 21x mai i ngā taha e rua.
9x^{2}-9x+5=14
Pahekotia te 12x me -21x, ka -9x.
9x^{2}-9x=14-5
Tangohia te 5 mai i ngā taha e rua.
9x^{2}-9x=9
Tangohia te 5 i te 14, ka 9.
\frac{9x^{2}-9x}{9}=\frac{9}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\left(-\frac{9}{9}\right)x=\frac{9}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}-x=\frac{9}{9}
Whakawehe -9 ki te 9.
x^{2}-x=1
Whakawehe 9 ki te 9.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{5}{4}
Tāpiri 1 ki te \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Whakarūnātia.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}