Whakaoti mō x, y
x=34-\frac{280}{3x_{7}}
y=\frac{28}{x_{7}}
x_{7}\neq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x_{7}y=84,10y+3x=102
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x_{7}y=84
Tīpakohia tētahi o ngā whārite e rua he māmā ake ki te whakaoti mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=\frac{28}{x_{7}}
Whakawehea ngā taha e rua ki te 3x_{7}.
10\times \frac{28}{x_{7}}+3x=102
Whakakapia te \frac{28}{x_{7}} mō te y ki tērā atu whārite, 10y+3x=102.
\frac{280}{x_{7}}+3x=102
Whakareatia 10 ki te \frac{28}{x_{7}}.
3x=102-\frac{280}{x_{7}}
Me tango \frac{280}{x_{7}} mai i ngā taha e rua o te whārite.
x=34-\frac{280}{3x_{7}}
Whakawehea ngā taha e rua ki te 3.
y=\frac{28}{x_{7}},x=34-\frac{280}{3x_{7}}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}