Whakaoti mō x, y
x = \frac{82}{3} = 27\frac{1}{3} \approx 27.333333333
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+10y=102,3x+y=84
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+10y=102
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-10y+102
Me tango 10y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-10y+102\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{10}{3}y+34
Whakareatia \frac{1}{3} ki te -10y+102.
3\left(-\frac{10}{3}y+34\right)+y=84
Whakakapia te -\frac{10y}{3}+34 mō te x ki tērā atu whārite, 3x+y=84.
-10y+102+y=84
Whakareatia 3 ki te -\frac{10y}{3}+34.
-9y+102=84
Tāpiri -10y ki te y.
-9y=-18
Me tango 102 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te -9.
x=-\frac{10}{3}\times 2+34
Whakaurua te 2 mō y ki x=-\frac{10}{3}y+34. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{20}{3}+34
Whakareatia -\frac{10}{3} ki te 2.
x=\frac{82}{3}
Tāpiri 34 ki te -\frac{20}{3}.
x=\frac{82}{3},y=2
Kua oti te pūnaha te whakatau.
3x+10y=102,3x+y=84
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&10\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}102\\84\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&10\\3&1\end{matrix}\right))\left(\begin{matrix}3&10\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\3&1\end{matrix}\right))\left(\begin{matrix}102\\84\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&10\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\3&1\end{matrix}\right))\left(\begin{matrix}102\\84\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\3&1\end{matrix}\right))\left(\begin{matrix}102\\84\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-10\times 3}&-\frac{10}{3-10\times 3}\\-\frac{3}{3-10\times 3}&\frac{3}{3-10\times 3}\end{matrix}\right)\left(\begin{matrix}102\\84\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{27}&\frac{10}{27}\\\frac{1}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}102\\84\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{27}\times 102+\frac{10}{27}\times 84\\\frac{1}{9}\times 102-\frac{1}{9}\times 84\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{82}{3}\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{82}{3},y=2
Tangohia ngā huānga poukapa x me y.
3x+10y=102,3x+y=84
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-3x+10y-y=102-84
Me tango 3x+y=84 mai i 3x+10y=102 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10y-y=102-84
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
9y=102-84
Tāpiri 10y ki te -y.
9y=18
Tāpiri 102 ki te -84.
y=2
Whakawehea ngā taha e rua ki te 9.
3x+2=84
Whakaurua te 2 mō y ki 3x+y=84. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=82
Me tango 2 mai i ngā taha e rua o te whārite.
x=\frac{82}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{82}{3},y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}