Whakaoti mō x (complex solution)
x=-\frac{2A^{4}-81}{3\left(A^{2}+9\right)}
A\neq -3i\text{ and }A\neq 3i
Whakaoti mō x
x=-\frac{2A^{4}-81}{3\left(A^{2}+9\right)}
Whakaoti mō A (complex solution)
A=\frac{\sqrt{3\sqrt{x^{2}-24x+72}-3x}}{2}
A=-\frac{\sqrt{3\sqrt{x^{2}-24x+72}-3x}}{2}
A=-\frac{\sqrt{-3\sqrt{x^{2}-24x+72}-3x}}{2}
A=\frac{\sqrt{-3\sqrt{x^{2}-24x+72}-3x}}{2}
Whakaoti mō A
A=-\frac{\sqrt{3\left(\sqrt{x^{2}-24x+72}-x\right)}}{2}
A=\frac{\sqrt{3\left(\sqrt{x^{2}-24x+72}-x\right)}}{2}\text{, }x\leq 3
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
3 x + \frac { A ^ { 4 } } { 9 + A ^ { 2 } } = 9 - A ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
3x\left(A-3i\right)\left(A+3i\right)+A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
Whakareatia ngā taha e rua o te whārite ki te \left(A-3i\right)\left(A+3i\right).
\left(3xA-9ix\right)\left(A+3i\right)+A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te A-3i.
3xA^{2}+27x+A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3xA-9ix ki te A+3i ka whakakotahi i ngā kupu rite.
3xA^{2}+27x+A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te A-3i ki te A+3i ka whakakotahi i ngā kupu rite.
3xA^{2}+27x+A^{4}=9A^{2}+81-A^{2}\left(A-3i\right)\left(A+3i\right)
Whakamahia te āhuatanga tohatoha hei whakarea te A^{2}+9 ki te 9.
3xA^{2}+27x+A^{4}=9A^{2}+81+\left(-A^{3}+3iA^{2}\right)\left(A+3i\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -A^{2} ki te A-3i.
3xA^{2}+27x+A^{4}=9A^{2}+81-A^{4}-9A^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te -A^{3}+3iA^{2} ki te A+3i ka whakakotahi i ngā kupu rite.
3xA^{2}+27x+A^{4}=81-A^{4}
Pahekotia te 9A^{2} me -9A^{2}, ka 0.
3xA^{2}+27x=81-A^{4}-A^{4}
Tangohia te A^{4} mai i ngā taha e rua.
3xA^{2}+27x=81-2A^{4}
Pahekotia te -A^{4} me -A^{4}, ka -2A^{4}.
\left(3A^{2}+27\right)x=81-2A^{4}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(3A^{2}+27\right)x}{3A^{2}+27}=\frac{81-2A^{4}}{3A^{2}+27}
Whakawehea ngā taha e rua ki te 3A^{2}+27.
x=\frac{81-2A^{4}}{3A^{2}+27}
Mā te whakawehe ki te 3A^{2}+27 ka wetekia te whakareanga ki te 3A^{2}+27.
x=\frac{81-2A^{4}}{3\left(A^{2}+9\right)}
Whakawehe 81-2A^{4} ki te 3A^{2}+27.
3x\left(A^{2}+9\right)+A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
Whakareatia ngā taha e rua o te whārite ki te A^{2}+9.
3xA^{2}+27x+A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te A^{2}+9.
3xA^{2}+27x+A^{4}=9A^{2}+81-A^{2}\left(A^{2}+9\right)
Whakamahia te āhuatanga tohatoha hei whakarea te A^{2}+9 ki te 9.
3xA^{2}+27x+A^{4}=9A^{2}+81-A^{4}-9A^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -A^{2} ki te A^{2}+9.
3xA^{2}+27x+A^{4}=81-A^{4}
Pahekotia te 9A^{2} me -9A^{2}, ka 0.
3xA^{2}+27x=81-A^{4}-A^{4}
Tangohia te A^{4} mai i ngā taha e rua.
3xA^{2}+27x=81-2A^{4}
Pahekotia te -A^{4} me -A^{4}, ka -2A^{4}.
\left(3A^{2}+27\right)x=81-2A^{4}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(3A^{2}+27\right)x}{3A^{2}+27}=\frac{81-2A^{4}}{3A^{2}+27}
Whakawehea ngā taha e rua ki te 3A^{2}+27.
x=\frac{81-2A^{4}}{3A^{2}+27}
Mā te whakawehe ki te 3A^{2}+27 ka wetekia te whakareanga ki te 3A^{2}+27.
x=\frac{81-2A^{4}}{3\left(A^{2}+9\right)}
Whakawehe 81-2A^{4} ki te 3A^{2}+27.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}