Whakaoti mō x
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
18x+3=2\left(4\times 3+1\right)x-1
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3,6.
18x+3=2\left(12+1\right)x-1
Whakareatia te 4 ki te 3, ka 12.
18x+3=2\times 13x-1
Tāpirihia te 12 ki te 1, ka 13.
18x+3=26x-1
Whakareatia te 2 ki te 13, ka 26.
18x+3-26x=-1
Tangohia te 26x mai i ngā taha e rua.
-8x+3=-1
Pahekotia te 18x me -26x, ka -8x.
-8x=-1-3
Tangohia te 3 mai i ngā taha e rua.
-8x=-4
Tangohia te 3 i te -1, ka -4.
x=\frac{-4}{-8}
Whakawehea ngā taha e rua ki te -8.
x=\frac{1}{2}
Whakahekea te hautanga \frac{-4}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}