Tīpoka ki ngā ihirangi matua
Whakaoti mō w
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3w^{2}-12w+7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 7}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -12 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 7}}{2\times 3}
Pūrua -12.
w=\frac{-\left(-12\right)±\sqrt{144-12\times 7}}{2\times 3}
Whakareatia -4 ki te 3.
w=\frac{-\left(-12\right)±\sqrt{144-84}}{2\times 3}
Whakareatia -12 ki te 7.
w=\frac{-\left(-12\right)±\sqrt{60}}{2\times 3}
Tāpiri 144 ki te -84.
w=\frac{-\left(-12\right)±2\sqrt{15}}{2\times 3}
Tuhia te pūtakerua o te 60.
w=\frac{12±2\sqrt{15}}{2\times 3}
Ko te tauaro o -12 ko 12.
w=\frac{12±2\sqrt{15}}{6}
Whakareatia 2 ki te 3.
w=\frac{2\sqrt{15}+12}{6}
Nā, me whakaoti te whārite w=\frac{12±2\sqrt{15}}{6} ina he tāpiri te ±. Tāpiri 12 ki te 2\sqrt{15}.
w=\frac{\sqrt{15}}{3}+2
Whakawehe 12+2\sqrt{15} ki te 6.
w=\frac{12-2\sqrt{15}}{6}
Nā, me whakaoti te whārite w=\frac{12±2\sqrt{15}}{6} ina he tango te ±. Tango 2\sqrt{15} mai i 12.
w=-\frac{\sqrt{15}}{3}+2
Whakawehe 12-2\sqrt{15} ki te 6.
w=\frac{\sqrt{15}}{3}+2 w=-\frac{\sqrt{15}}{3}+2
Kua oti te whārite te whakatau.
3w^{2}-12w+7=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3w^{2}-12w+7-7=-7
Me tango 7 mai i ngā taha e rua o te whārite.
3w^{2}-12w=-7
Mā te tango i te 7 i a ia ake anō ka toe ko te 0.
\frac{3w^{2}-12w}{3}=-\frac{7}{3}
Whakawehea ngā taha e rua ki te 3.
w^{2}+\left(-\frac{12}{3}\right)w=-\frac{7}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
w^{2}-4w=-\frac{7}{3}
Whakawehe -12 ki te 3.
w^{2}-4w+\left(-2\right)^{2}=-\frac{7}{3}+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}-4w+4=-\frac{7}{3}+4
Pūrua -2.
w^{2}-4w+4=\frac{5}{3}
Tāpiri -\frac{7}{3} ki te 4.
\left(w-2\right)^{2}=\frac{5}{3}
Tauwehea w^{2}-4w+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-2\right)^{2}}=\sqrt{\frac{5}{3}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w-2=\frac{\sqrt{15}}{3} w-2=-\frac{\sqrt{15}}{3}
Whakarūnātia.
w=\frac{\sqrt{15}}{3}+2 w=-\frac{\sqrt{15}}{3}+2
Me tāpiri 2 ki ngā taha e rua o te whārite.