Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-10 ab=3\times 8=24
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3w^{2}+aw+bw+8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-24 -2,-12 -3,-8 -4,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Tātaihia te tapeke mō ia takirua.
a=-6 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(3w^{2}-6w\right)+\left(-4w+8\right)
Tuhia anō te 3w^{2}-10w+8 hei \left(3w^{2}-6w\right)+\left(-4w+8\right).
3w\left(w-2\right)-4\left(w-2\right)
Tauwehea te 3w i te tuatahi me te -4 i te rōpū tuarua.
\left(w-2\right)\left(3w-4\right)
Whakatauwehea atu te kīanga pātahi w-2 mā te whakamahi i te āhuatanga tātai tohatoha.
3w^{2}-10w+8=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
w=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\times 8}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-\left(-10\right)±\sqrt{100-4\times 3\times 8}}{2\times 3}
Pūrua -10.
w=\frac{-\left(-10\right)±\sqrt{100-12\times 8}}{2\times 3}
Whakareatia -4 ki te 3.
w=\frac{-\left(-10\right)±\sqrt{100-96}}{2\times 3}
Whakareatia -12 ki te 8.
w=\frac{-\left(-10\right)±\sqrt{4}}{2\times 3}
Tāpiri 100 ki te -96.
w=\frac{-\left(-10\right)±2}{2\times 3}
Tuhia te pūtakerua o te 4.
w=\frac{10±2}{2\times 3}
Ko te tauaro o -10 ko 10.
w=\frac{10±2}{6}
Whakareatia 2 ki te 3.
w=\frac{12}{6}
Nā, me whakaoti te whārite w=\frac{10±2}{6} ina he tāpiri te ±. Tāpiri 10 ki te 2.
w=2
Whakawehe 12 ki te 6.
w=\frac{8}{6}
Nā, me whakaoti te whārite w=\frac{10±2}{6} ina he tango te ±. Tango 2 mai i 10.
w=\frac{4}{3}
Whakahekea te hautanga \frac{8}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
3w^{2}-10w+8=3\left(w-2\right)\left(w-\frac{4}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te \frac{4}{3} mō te x_{2}.
3w^{2}-10w+8=3\left(w-2\right)\times \frac{3w-4}{3}
Tango \frac{4}{3} mai i w mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3w^{2}-10w+8=\left(w-2\right)\left(3w-4\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.