Tīpoka ki ngā ihirangi matua
Whakaoti mō w
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3w^{2}+18w=0
Me tāpiri te 18w ki ngā taha e rua.
w\left(3w+18\right)=0
Tauwehea te w.
w=0 w=-6
Hei kimi otinga whārite, me whakaoti te w=0 me te 3w+18=0.
3w^{2}+18w=0
Me tāpiri te 18w ki ngā taha e rua.
w=\frac{-18±\sqrt{18^{2}}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 18 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-18±18}{2\times 3}
Tuhia te pūtakerua o te 18^{2}.
w=\frac{-18±18}{6}
Whakareatia 2 ki te 3.
w=\frac{0}{6}
Nā, me whakaoti te whārite w=\frac{-18±18}{6} ina he tāpiri te ±. Tāpiri -18 ki te 18.
w=0
Whakawehe 0 ki te 6.
w=-\frac{36}{6}
Nā, me whakaoti te whārite w=\frac{-18±18}{6} ina he tango te ±. Tango 18 mai i -18.
w=-6
Whakawehe -36 ki te 6.
w=0 w=-6
Kua oti te whārite te whakatau.
3w^{2}+18w=0
Me tāpiri te 18w ki ngā taha e rua.
\frac{3w^{2}+18w}{3}=\frac{0}{3}
Whakawehea ngā taha e rua ki te 3.
w^{2}+\frac{18}{3}w=\frac{0}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
w^{2}+6w=\frac{0}{3}
Whakawehe 18 ki te 3.
w^{2}+6w=0
Whakawehe 0 ki te 3.
w^{2}+6w+3^{2}=3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}+6w+9=9
Pūrua 3.
\left(w+3\right)^{2}=9
Tauwehea w^{2}+6w+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+3\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w+3=3 w+3=-3
Whakarūnātia.
w=0 w=-6
Me tango 3 mai i ngā taha e rua o te whārite.