Whakaoti mō w
w=-3
w=-\frac{2}{3}\approx -0.666666667
Tohaina
Kua tāruatia ki te papatopenga
3w^{2}+6+11w=0
Me tāpiri te 11w ki ngā taha e rua.
3w^{2}+11w+6=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=11 ab=3\times 6=18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3w^{2}+aw+bw+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,18 2,9 3,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
1+18=19 2+9=11 3+6=9
Tātaihia te tapeke mō ia takirua.
a=2 b=9
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(3w^{2}+2w\right)+\left(9w+6\right)
Tuhia anō te 3w^{2}+11w+6 hei \left(3w^{2}+2w\right)+\left(9w+6\right).
w\left(3w+2\right)+3\left(3w+2\right)
Tauwehea te w i te tuatahi me te 3 i te rōpū tuarua.
\left(3w+2\right)\left(w+3\right)
Whakatauwehea atu te kīanga pātahi 3w+2 mā te whakamahi i te āhuatanga tātai tohatoha.
w=-\frac{2}{3} w=-3
Hei kimi otinga whārite, me whakaoti te 3w+2=0 me te w+3=0.
3w^{2}+6+11w=0
Me tāpiri te 11w ki ngā taha e rua.
3w^{2}+11w+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-11±\sqrt{11^{2}-4\times 3\times 6}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 11 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-11±\sqrt{121-4\times 3\times 6}}{2\times 3}
Pūrua 11.
w=\frac{-11±\sqrt{121-12\times 6}}{2\times 3}
Whakareatia -4 ki te 3.
w=\frac{-11±\sqrt{121-72}}{2\times 3}
Whakareatia -12 ki te 6.
w=\frac{-11±\sqrt{49}}{2\times 3}
Tāpiri 121 ki te -72.
w=\frac{-11±7}{2\times 3}
Tuhia te pūtakerua o te 49.
w=\frac{-11±7}{6}
Whakareatia 2 ki te 3.
w=-\frac{4}{6}
Nā, me whakaoti te whārite w=\frac{-11±7}{6} ina he tāpiri te ±. Tāpiri -11 ki te 7.
w=-\frac{2}{3}
Whakahekea te hautanga \frac{-4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
w=-\frac{18}{6}
Nā, me whakaoti te whārite w=\frac{-11±7}{6} ina he tango te ±. Tango 7 mai i -11.
w=-3
Whakawehe -18 ki te 6.
w=-\frac{2}{3} w=-3
Kua oti te whārite te whakatau.
3w^{2}+6+11w=0
Me tāpiri te 11w ki ngā taha e rua.
3w^{2}+11w=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{3w^{2}+11w}{3}=-\frac{6}{3}
Whakawehea ngā taha e rua ki te 3.
w^{2}+\frac{11}{3}w=-\frac{6}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
w^{2}+\frac{11}{3}w=-2
Whakawehe -6 ki te 3.
w^{2}+\frac{11}{3}w+\left(\frac{11}{6}\right)^{2}=-2+\left(\frac{11}{6}\right)^{2}
Whakawehea te \frac{11}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{6}. Nā, tāpiria te pūrua o te \frac{11}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}+\frac{11}{3}w+\frac{121}{36}=-2+\frac{121}{36}
Pūruatia \frac{11}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
w^{2}+\frac{11}{3}w+\frac{121}{36}=\frac{49}{36}
Tāpiri -2 ki te \frac{121}{36}.
\left(w+\frac{11}{6}\right)^{2}=\frac{49}{36}
Tauwehea w^{2}+\frac{11}{3}w+\frac{121}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+\frac{11}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w+\frac{11}{6}=\frac{7}{6} w+\frac{11}{6}=-\frac{7}{6}
Whakarūnātia.
w=-\frac{2}{3} w=-3
Me tango \frac{11}{6} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}