Whakaoti mō w
w=\frac{\sqrt{13}-7}{3}\approx -1.131482908
w=\frac{-\sqrt{13}-7}{3}\approx -3.535183758
Tohaina
Kua tāruatia ki te papatopenga
3w^{2}+15w+12-w=0
Tangohia te w mai i ngā taha e rua.
3w^{2}+14w+12=0
Pahekotia te 15w me -w, ka 14w.
w=\frac{-14±\sqrt{14^{2}-4\times 3\times 12}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 14 mō b, me 12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-14±\sqrt{196-4\times 3\times 12}}{2\times 3}
Pūrua 14.
w=\frac{-14±\sqrt{196-12\times 12}}{2\times 3}
Whakareatia -4 ki te 3.
w=\frac{-14±\sqrt{196-144}}{2\times 3}
Whakareatia -12 ki te 12.
w=\frac{-14±\sqrt{52}}{2\times 3}
Tāpiri 196 ki te -144.
w=\frac{-14±2\sqrt{13}}{2\times 3}
Tuhia te pūtakerua o te 52.
w=\frac{-14±2\sqrt{13}}{6}
Whakareatia 2 ki te 3.
w=\frac{2\sqrt{13}-14}{6}
Nā, me whakaoti te whārite w=\frac{-14±2\sqrt{13}}{6} ina he tāpiri te ±. Tāpiri -14 ki te 2\sqrt{13}.
w=\frac{\sqrt{13}-7}{3}
Whakawehe -14+2\sqrt{13} ki te 6.
w=\frac{-2\sqrt{13}-14}{6}
Nā, me whakaoti te whārite w=\frac{-14±2\sqrt{13}}{6} ina he tango te ±. Tango 2\sqrt{13} mai i -14.
w=\frac{-\sqrt{13}-7}{3}
Whakawehe -14-2\sqrt{13} ki te 6.
w=\frac{\sqrt{13}-7}{3} w=\frac{-\sqrt{13}-7}{3}
Kua oti te whārite te whakatau.
3w^{2}+15w+12-w=0
Tangohia te w mai i ngā taha e rua.
3w^{2}+14w+12=0
Pahekotia te 15w me -w, ka 14w.
3w^{2}+14w=-12
Tangohia te 12 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{3w^{2}+14w}{3}=-\frac{12}{3}
Whakawehea ngā taha e rua ki te 3.
w^{2}+\frac{14}{3}w=-\frac{12}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
w^{2}+\frac{14}{3}w=-4
Whakawehe -12 ki te 3.
w^{2}+\frac{14}{3}w+\left(\frac{7}{3}\right)^{2}=-4+\left(\frac{7}{3}\right)^{2}
Whakawehea te \frac{14}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{3}. Nā, tāpiria te pūrua o te \frac{7}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}+\frac{14}{3}w+\frac{49}{9}=-4+\frac{49}{9}
Pūruatia \frac{7}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
w^{2}+\frac{14}{3}w+\frac{49}{9}=\frac{13}{9}
Tāpiri -4 ki te \frac{49}{9}.
\left(w+\frac{7}{3}\right)^{2}=\frac{13}{9}
Tauwehea w^{2}+\frac{14}{3}w+\frac{49}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+\frac{7}{3}\right)^{2}}=\sqrt{\frac{13}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w+\frac{7}{3}=\frac{\sqrt{13}}{3} w+\frac{7}{3}=-\frac{\sqrt{13}}{3}
Whakarūnātia.
w=\frac{\sqrt{13}-7}{3} w=\frac{-\sqrt{13}-7}{3}
Me tango \frac{7}{3} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}