Whakaoti mō v
v=\sqrt{6}+1\approx 3.449489743
v=1-\sqrt{6}\approx -1.449489743
Tohaina
Kua tāruatia ki te papatopenga
3v^{2}-15-6v=0
Tangohia te 6v mai i ngā taha e rua.
3v^{2}-6v-15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
v=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\left(-15\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -6 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-6\right)±\sqrt{36-4\times 3\left(-15\right)}}{2\times 3}
Pūrua -6.
v=\frac{-\left(-6\right)±\sqrt{36-12\left(-15\right)}}{2\times 3}
Whakareatia -4 ki te 3.
v=\frac{-\left(-6\right)±\sqrt{36+180}}{2\times 3}
Whakareatia -12 ki te -15.
v=\frac{-\left(-6\right)±\sqrt{216}}{2\times 3}
Tāpiri 36 ki te 180.
v=\frac{-\left(-6\right)±6\sqrt{6}}{2\times 3}
Tuhia te pūtakerua o te 216.
v=\frac{6±6\sqrt{6}}{2\times 3}
Ko te tauaro o -6 ko 6.
v=\frac{6±6\sqrt{6}}{6}
Whakareatia 2 ki te 3.
v=\frac{6\sqrt{6}+6}{6}
Nā, me whakaoti te whārite v=\frac{6±6\sqrt{6}}{6} ina he tāpiri te ±. Tāpiri 6 ki te 6\sqrt{6}.
v=\sqrt{6}+1
Whakawehe 6+6\sqrt{6} ki te 6.
v=\frac{6-6\sqrt{6}}{6}
Nā, me whakaoti te whārite v=\frac{6±6\sqrt{6}}{6} ina he tango te ±. Tango 6\sqrt{6} mai i 6.
v=1-\sqrt{6}
Whakawehe 6-6\sqrt{6} ki te 6.
v=\sqrt{6}+1 v=1-\sqrt{6}
Kua oti te whārite te whakatau.
3v^{2}-15-6v=0
Tangohia te 6v mai i ngā taha e rua.
3v^{2}-6v=15
Me tāpiri te 15 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{3v^{2}-6v}{3}=\frac{15}{3}
Whakawehea ngā taha e rua ki te 3.
v^{2}+\left(-\frac{6}{3}\right)v=\frac{15}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
v^{2}-2v=\frac{15}{3}
Whakawehe -6 ki te 3.
v^{2}-2v=5
Whakawehe 15 ki te 3.
v^{2}-2v+1=5+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
v^{2}-2v+1=6
Tāpiri 5 ki te 1.
\left(v-1\right)^{2}=6
Tauwehea v^{2}-2v+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-1\right)^{2}}=\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
v-1=\sqrt{6} v-1=-\sqrt{6}
Whakarūnātia.
v=\sqrt{6}+1 v=1-\sqrt{6}
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}