Tauwehe
\left(v+1\right)\left(3v+8\right)
Aromātai
\left(v+1\right)\left(3v+8\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=11 ab=3\times 8=24
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3v^{2}+av+bv+8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,24 2,12 3,8 4,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
1+24=25 2+12=14 3+8=11 4+6=10
Tātaihia te tapeke mō ia takirua.
a=3 b=8
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(3v^{2}+3v\right)+\left(8v+8\right)
Tuhia anō te 3v^{2}+11v+8 hei \left(3v^{2}+3v\right)+\left(8v+8\right).
3v\left(v+1\right)+8\left(v+1\right)
Tauwehea te 3v i te tuatahi me te 8 i te rōpū tuarua.
\left(v+1\right)\left(3v+8\right)
Whakatauwehea atu te kīanga pātahi v+1 mā te whakamahi i te āhuatanga tātai tohatoha.
3v^{2}+11v+8=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
v=\frac{-11±\sqrt{11^{2}-4\times 3\times 8}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
v=\frac{-11±\sqrt{121-4\times 3\times 8}}{2\times 3}
Pūrua 11.
v=\frac{-11±\sqrt{121-12\times 8}}{2\times 3}
Whakareatia -4 ki te 3.
v=\frac{-11±\sqrt{121-96}}{2\times 3}
Whakareatia -12 ki te 8.
v=\frac{-11±\sqrt{25}}{2\times 3}
Tāpiri 121 ki te -96.
v=\frac{-11±5}{2\times 3}
Tuhia te pūtakerua o te 25.
v=\frac{-11±5}{6}
Whakareatia 2 ki te 3.
v=-\frac{6}{6}
Nā, me whakaoti te whārite v=\frac{-11±5}{6} ina he tāpiri te ±. Tāpiri -11 ki te 5.
v=-1
Whakawehe -6 ki te 6.
v=-\frac{16}{6}
Nā, me whakaoti te whārite v=\frac{-11±5}{6} ina he tango te ±. Tango 5 mai i -11.
v=-\frac{8}{3}
Whakahekea te hautanga \frac{-16}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
3v^{2}+11v+8=3\left(v-\left(-1\right)\right)\left(v-\left(-\frac{8}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1 mō te x_{1} me te -\frac{8}{3} mō te x_{2}.
3v^{2}+11v+8=3\left(v+1\right)\left(v+\frac{8}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
3v^{2}+11v+8=3\left(v+1\right)\times \frac{3v+8}{3}
Tāpiri \frac{8}{3} ki te v mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3v^{2}+11v+8=\left(v+1\right)\left(3v+8\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}