Whakaoti mō u
u=-\frac{1}{3}\approx -0.333333333
u=5
Tohaina
Kua tāruatia ki te papatopenga
3u^{2}-14u-5=0
Tangohia te 5 mai i ngā taha e rua.
a+b=-14 ab=3\left(-5\right)=-15
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3u^{2}+au+bu-5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-15 3,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -15.
1-15=-14 3-5=-2
Tātaihia te tapeke mō ia takirua.
a=-15 b=1
Ko te otinga te takirua ka hoatu i te tapeke -14.
\left(3u^{2}-15u\right)+\left(u-5\right)
Tuhia anō te 3u^{2}-14u-5 hei \left(3u^{2}-15u\right)+\left(u-5\right).
3u\left(u-5\right)+u-5
Whakatauwehea atu 3u i te 3u^{2}-15u.
\left(u-5\right)\left(3u+1\right)
Whakatauwehea atu te kīanga pātahi u-5 mā te whakamahi i te āhuatanga tātai tohatoha.
u=5 u=-\frac{1}{3}
Hei kimi otinga whārite, me whakaoti te u-5=0 me te 3u+1=0.
3u^{2}-14u=5
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3u^{2}-14u-5=5-5
Me tango 5 mai i ngā taha e rua o te whārite.
3u^{2}-14u-5=0
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
u=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 3\left(-5\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -14 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-\left(-14\right)±\sqrt{196-4\times 3\left(-5\right)}}{2\times 3}
Pūrua -14.
u=\frac{-\left(-14\right)±\sqrt{196-12\left(-5\right)}}{2\times 3}
Whakareatia -4 ki te 3.
u=\frac{-\left(-14\right)±\sqrt{196+60}}{2\times 3}
Whakareatia -12 ki te -5.
u=\frac{-\left(-14\right)±\sqrt{256}}{2\times 3}
Tāpiri 196 ki te 60.
u=\frac{-\left(-14\right)±16}{2\times 3}
Tuhia te pūtakerua o te 256.
u=\frac{14±16}{2\times 3}
Ko te tauaro o -14 ko 14.
u=\frac{14±16}{6}
Whakareatia 2 ki te 3.
u=\frac{30}{6}
Nā, me whakaoti te whārite u=\frac{14±16}{6} ina he tāpiri te ±. Tāpiri 14 ki te 16.
u=5
Whakawehe 30 ki te 6.
u=-\frac{2}{6}
Nā, me whakaoti te whārite u=\frac{14±16}{6} ina he tango te ±. Tango 16 mai i 14.
u=-\frac{1}{3}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
u=5 u=-\frac{1}{3}
Kua oti te whārite te whakatau.
3u^{2}-14u=5
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{3u^{2}-14u}{3}=\frac{5}{3}
Whakawehea ngā taha e rua ki te 3.
u^{2}-\frac{14}{3}u=\frac{5}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
u^{2}-\frac{14}{3}u+\left(-\frac{7}{3}\right)^{2}=\frac{5}{3}+\left(-\frac{7}{3}\right)^{2}
Whakawehea te -\frac{14}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{3}. Nā, tāpiria te pūrua o te -\frac{7}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
u^{2}-\frac{14}{3}u+\frac{49}{9}=\frac{5}{3}+\frac{49}{9}
Pūruatia -\frac{7}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
u^{2}-\frac{14}{3}u+\frac{49}{9}=\frac{64}{9}
Tāpiri \frac{5}{3} ki te \frac{49}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(u-\frac{7}{3}\right)^{2}=\frac{64}{9}
Tauwehea u^{2}-\frac{14}{3}u+\frac{49}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u-\frac{7}{3}\right)^{2}}=\sqrt{\frac{64}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
u-\frac{7}{3}=\frac{8}{3} u-\frac{7}{3}=-\frac{8}{3}
Whakarūnātia.
u=5 u=-\frac{1}{3}
Me tāpiri \frac{7}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}