Whakaoti mō u
u=-5
u=0
Pātaitai
Polynomial
3 u ^ { 2 } = - 15 u
Tohaina
Kua tāruatia ki te papatopenga
3u^{2}+15u=0
Me tāpiri te 15u ki ngā taha e rua.
u\left(3u+15\right)=0
Tauwehea te u.
u=0 u=-5
Hei kimi otinga whārite, me whakaoti te u=0 me te 3u+15=0.
3u^{2}+15u=0
Me tāpiri te 15u ki ngā taha e rua.
u=\frac{-15±\sqrt{15^{2}}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 15 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-15±15}{2\times 3}
Tuhia te pūtakerua o te 15^{2}.
u=\frac{-15±15}{6}
Whakareatia 2 ki te 3.
u=\frac{0}{6}
Nā, me whakaoti te whārite u=\frac{-15±15}{6} ina he tāpiri te ±. Tāpiri -15 ki te 15.
u=0
Whakawehe 0 ki te 6.
u=-\frac{30}{6}
Nā, me whakaoti te whārite u=\frac{-15±15}{6} ina he tango te ±. Tango 15 mai i -15.
u=-5
Whakawehe -30 ki te 6.
u=0 u=-5
Kua oti te whārite te whakatau.
3u^{2}+15u=0
Me tāpiri te 15u ki ngā taha e rua.
\frac{3u^{2}+15u}{3}=\frac{0}{3}
Whakawehea ngā taha e rua ki te 3.
u^{2}+\frac{15}{3}u=\frac{0}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
u^{2}+5u=\frac{0}{3}
Whakawehe 15 ki te 3.
u^{2}+5u=0
Whakawehe 0 ki te 3.
u^{2}+5u+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
u^{2}+5u+\frac{25}{4}=\frac{25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(u+\frac{5}{2}\right)^{2}=\frac{25}{4}
Tauwehea u^{2}+5u+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
u+\frac{5}{2}=\frac{5}{2} u+\frac{5}{2}=-\frac{5}{2}
Whakarūnātia.
u=0 u=-5
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}