Tauwehe
3\left(u+2\right)\left(u+15\right)
Aromātai
3\left(u+2\right)\left(u+15\right)
Tohaina
Kua tāruatia ki te papatopenga
3\left(u^{2}+17u+30\right)
Tauwehea te 3.
a+b=17 ab=1\times 30=30
Whakaarohia te u^{2}+17u+30. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei u^{2}+au+bu+30. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,30 2,15 3,10 5,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 30.
1+30=31 2+15=17 3+10=13 5+6=11
Tātaihia te tapeke mō ia takirua.
a=2 b=15
Ko te otinga te takirua ka hoatu i te tapeke 17.
\left(u^{2}+2u\right)+\left(15u+30\right)
Tuhia anō te u^{2}+17u+30 hei \left(u^{2}+2u\right)+\left(15u+30\right).
u\left(u+2\right)+15\left(u+2\right)
Tauwehea te u i te tuatahi me te 15 i te rōpū tuarua.
\left(u+2\right)\left(u+15\right)
Whakatauwehea atu te kīanga pātahi u+2 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(u+2\right)\left(u+15\right)
Me tuhi anō te kīanga whakatauwehe katoa.
3u^{2}+51u+90=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
u=\frac{-51±\sqrt{51^{2}-4\times 3\times 90}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
u=\frac{-51±\sqrt{2601-4\times 3\times 90}}{2\times 3}
Pūrua 51.
u=\frac{-51±\sqrt{2601-12\times 90}}{2\times 3}
Whakareatia -4 ki te 3.
u=\frac{-51±\sqrt{2601-1080}}{2\times 3}
Whakareatia -12 ki te 90.
u=\frac{-51±\sqrt{1521}}{2\times 3}
Tāpiri 2601 ki te -1080.
u=\frac{-51±39}{2\times 3}
Tuhia te pūtakerua o te 1521.
u=\frac{-51±39}{6}
Whakareatia 2 ki te 3.
u=-\frac{12}{6}
Nā, me whakaoti te whārite u=\frac{-51±39}{6} ina he tāpiri te ±. Tāpiri -51 ki te 39.
u=-2
Whakawehe -12 ki te 6.
u=-\frac{90}{6}
Nā, me whakaoti te whārite u=\frac{-51±39}{6} ina he tango te ±. Tango 39 mai i -51.
u=-15
Whakawehe -90 ki te 6.
3u^{2}+51u+90=3\left(u-\left(-2\right)\right)\left(u-\left(-15\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -2 mō te x_{1} me te -15 mō te x_{2}.
3u^{2}+51u+90=3\left(u+2\right)\left(u+15\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}