Whakaoti mō u
u = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Tohaina
Kua tāruatia ki te papatopenga
3u+1+8u+2=3\left(u-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te -4u-1.
11u+1+2=3\left(u-3\right)
Pahekotia te 3u me 8u, ka 11u.
11u+3=3\left(u-3\right)
Tāpirihia te 1 ki te 2, ka 3.
11u+3=3u-9
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te u-3.
11u+3-3u=-9
Tangohia te 3u mai i ngā taha e rua.
8u+3=-9
Pahekotia te 11u me -3u, ka 8u.
8u=-9-3
Tangohia te 3 mai i ngā taha e rua.
8u=-12
Tangohia te 3 i te -9, ka -12.
u=\frac{-12}{8}
Whakawehea ngā taha e rua ki te 8.
u=-\frac{3}{2}
Whakahekea te hautanga \frac{-12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}