Tauwehe
\left(t-4\right)\left(t+7\right)
Aromātai
\left(t-4\right)\left(t+7\right)
Pātaitai
Polynomial
3 t - 28 + t ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
t^{2}+3t-28
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=3 ab=1\left(-28\right)=-28
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei t^{2}+at+bt-28. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,28 -2,14 -4,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -28.
-1+28=27 -2+14=12 -4+7=3
Tātaihia te tapeke mō ia takirua.
a=-4 b=7
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(t^{2}-4t\right)+\left(7t-28\right)
Tuhia anō te t^{2}+3t-28 hei \left(t^{2}-4t\right)+\left(7t-28\right).
t\left(t-4\right)+7\left(t-4\right)
Tauwehea te t i te tuatahi me te 7 i te rōpū tuarua.
\left(t-4\right)\left(t+7\right)
Whakatauwehea atu te kīanga pātahi t-4 mā te whakamahi i te āhuatanga tātai tohatoha.
t^{2}+3t-28=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-3±\sqrt{3^{2}-4\left(-28\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-3±\sqrt{9-4\left(-28\right)}}{2}
Pūrua 3.
t=\frac{-3±\sqrt{9+112}}{2}
Whakareatia -4 ki te -28.
t=\frac{-3±\sqrt{121}}{2}
Tāpiri 9 ki te 112.
t=\frac{-3±11}{2}
Tuhia te pūtakerua o te 121.
t=\frac{8}{2}
Nā, me whakaoti te whārite t=\frac{-3±11}{2} ina he tāpiri te ±. Tāpiri -3 ki te 11.
t=4
Whakawehe 8 ki te 2.
t=-\frac{14}{2}
Nā, me whakaoti te whārite t=\frac{-3±11}{2} ina he tango te ±. Tango 11 mai i -3.
t=-7
Whakawehe -14 ki te 2.
t^{2}+3t-28=\left(t-4\right)\left(t-\left(-7\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 4 mō te x_{1} me te -7 mō te x_{2}.
t^{2}+3t-28=\left(t-4\right)\left(t+7\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}