Whakaoti mō t
t = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Tohaina
Kua tāruatia ki te papatopenga
3t-2-5t=1
Tangohia te 5t mai i ngā taha e rua.
-2t-2=1
Pahekotia te 3t me -5t, ka -2t.
-2t=1+2
Me tāpiri te 2 ki ngā taha e rua.
-2t=3
Tāpirihia te 1 ki te 2, ka 3.
t=\frac{3}{-2}
Whakawehea ngā taha e rua ki te -2.
t=-\frac{3}{2}
Ka taea te hautanga \frac{3}{-2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}