Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-2 ab=3\left(-1\right)=-3
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3t^{2}+at+bt-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-3 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(3t^{2}-3t\right)+\left(t-1\right)
Tuhia anō te 3t^{2}-2t-1 hei \left(3t^{2}-3t\right)+\left(t-1\right).
3t\left(t-1\right)+t-1
Whakatauwehea atu 3t i te 3t^{2}-3t.
\left(t-1\right)\left(3t+1\right)
Whakatauwehea atu te kīanga pātahi t-1 mā te whakamahi i te āhuatanga tātai tohatoha.
3t^{2}-2t-1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-1\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-1\right)}}{2\times 3}
Pūrua -2.
t=\frac{-\left(-2\right)±\sqrt{4-12\left(-1\right)}}{2\times 3}
Whakareatia -4 ki te 3.
t=\frac{-\left(-2\right)±\sqrt{4+12}}{2\times 3}
Whakareatia -12 ki te -1.
t=\frac{-\left(-2\right)±\sqrt{16}}{2\times 3}
Tāpiri 4 ki te 12.
t=\frac{-\left(-2\right)±4}{2\times 3}
Tuhia te pūtakerua o te 16.
t=\frac{2±4}{2\times 3}
Ko te tauaro o -2 ko 2.
t=\frac{2±4}{6}
Whakareatia 2 ki te 3.
t=\frac{6}{6}
Nā, me whakaoti te whārite t=\frac{2±4}{6} ina he tāpiri te ±. Tāpiri 2 ki te 4.
t=1
Whakawehe 6 ki te 6.
t=-\frac{2}{6}
Nā, me whakaoti te whārite t=\frac{2±4}{6} ina he tango te ±. Tango 4 mai i 2.
t=-\frac{1}{3}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
3t^{2}-2t-1=3\left(t-1\right)\left(t-\left(-\frac{1}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te -\frac{1}{3} mō te x_{2}.
3t^{2}-2t-1=3\left(t-1\right)\left(t+\frac{1}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
3t^{2}-2t-1=3\left(t-1\right)\times \frac{3t+1}{3}
Tāpiri \frac{1}{3} ki te t mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3t^{2}-2t-1=\left(t-1\right)\left(3t+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.