Whakaoti mō t
t = \frac{\sqrt{85} + 5}{3} \approx 4.739848152
t=\frac{5-\sqrt{85}}{3}\approx -1.406514819
Tohaina
Kua tāruatia ki te papatopenga
3t^{2}-10t-20=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\left(-20\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -10 mō b, me -20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-10\right)±\sqrt{100-4\times 3\left(-20\right)}}{2\times 3}
Pūrua -10.
t=\frac{-\left(-10\right)±\sqrt{100-12\left(-20\right)}}{2\times 3}
Whakareatia -4 ki te 3.
t=\frac{-\left(-10\right)±\sqrt{100+240}}{2\times 3}
Whakareatia -12 ki te -20.
t=\frac{-\left(-10\right)±\sqrt{340}}{2\times 3}
Tāpiri 100 ki te 240.
t=\frac{-\left(-10\right)±2\sqrt{85}}{2\times 3}
Tuhia te pūtakerua o te 340.
t=\frac{10±2\sqrt{85}}{2\times 3}
Ko te tauaro o -10 ko 10.
t=\frac{10±2\sqrt{85}}{6}
Whakareatia 2 ki te 3.
t=\frac{2\sqrt{85}+10}{6}
Nā, me whakaoti te whārite t=\frac{10±2\sqrt{85}}{6} ina he tāpiri te ±. Tāpiri 10 ki te 2\sqrt{85}.
t=\frac{\sqrt{85}+5}{3}
Whakawehe 10+2\sqrt{85} ki te 6.
t=\frac{10-2\sqrt{85}}{6}
Nā, me whakaoti te whārite t=\frac{10±2\sqrt{85}}{6} ina he tango te ±. Tango 2\sqrt{85} mai i 10.
t=\frac{5-\sqrt{85}}{3}
Whakawehe 10-2\sqrt{85} ki te 6.
t=\frac{\sqrt{85}+5}{3} t=\frac{5-\sqrt{85}}{3}
Kua oti te whārite te whakatau.
3t^{2}-10t-20=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3t^{2}-10t-20-\left(-20\right)=-\left(-20\right)
Me tāpiri 20 ki ngā taha e rua o te whārite.
3t^{2}-10t=-\left(-20\right)
Mā te tango i te -20 i a ia ake anō ka toe ko te 0.
3t^{2}-10t=20
Tango -20 mai i 0.
\frac{3t^{2}-10t}{3}=\frac{20}{3}
Whakawehea ngā taha e rua ki te 3.
t^{2}-\frac{10}{3}t=\frac{20}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
t^{2}-\frac{10}{3}t+\left(-\frac{5}{3}\right)^{2}=\frac{20}{3}+\left(-\frac{5}{3}\right)^{2}
Whakawehea te -\frac{10}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{3}. Nā, tāpiria te pūrua o te -\frac{5}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{10}{3}t+\frac{25}{9}=\frac{20}{3}+\frac{25}{9}
Pūruatia -\frac{5}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-\frac{10}{3}t+\frac{25}{9}=\frac{85}{9}
Tāpiri \frac{20}{3} ki te \frac{25}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t-\frac{5}{3}\right)^{2}=\frac{85}{9}
Tauwehea t^{2}-\frac{10}{3}t+\frac{25}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{3}\right)^{2}}=\sqrt{\frac{85}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{5}{3}=\frac{\sqrt{85}}{3} t-\frac{5}{3}=-\frac{\sqrt{85}}{3}
Whakarūnātia.
t=\frac{\sqrt{85}+5}{3} t=\frac{5-\sqrt{85}}{3}
Me tāpiri \frac{5}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}