Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3t^{2}=190
Whakareatia te 38 ki te 5, ka 190.
t^{2}=\frac{190}{3}
Whakawehea ngā taha e rua ki te 3.
t=\frac{\sqrt{570}}{3} t=-\frac{\sqrt{570}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3t^{2}=190
Whakareatia te 38 ki te 5, ka 190.
3t^{2}-190=0
Tangohia te 190 mai i ngā taha e rua.
t=\frac{0±\sqrt{0^{2}-4\times 3\left(-190\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -190 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 3\left(-190\right)}}{2\times 3}
Pūrua 0.
t=\frac{0±\sqrt{-12\left(-190\right)}}{2\times 3}
Whakareatia -4 ki te 3.
t=\frac{0±\sqrt{2280}}{2\times 3}
Whakareatia -12 ki te -190.
t=\frac{0±2\sqrt{570}}{2\times 3}
Tuhia te pūtakerua o te 2280.
t=\frac{0±2\sqrt{570}}{6}
Whakareatia 2 ki te 3.
t=\frac{\sqrt{570}}{3}
Nā, me whakaoti te whārite t=\frac{0±2\sqrt{570}}{6} ina he tāpiri te ±.
t=-\frac{\sqrt{570}}{3}
Nā, me whakaoti te whārite t=\frac{0±2\sqrt{570}}{6} ina he tango te ±.
t=\frac{\sqrt{570}}{3} t=-\frac{\sqrt{570}}{3}
Kua oti te whārite te whakatau.