Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=16 ab=3\times 5=15
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3s^{2}+as+bs+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,15 3,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 15.
1+15=16 3+5=8
Tātaihia te tapeke mō ia takirua.
a=1 b=15
Ko te otinga te takirua ka hoatu i te tapeke 16.
\left(3s^{2}+s\right)+\left(15s+5\right)
Tuhia anō te 3s^{2}+16s+5 hei \left(3s^{2}+s\right)+\left(15s+5\right).
s\left(3s+1\right)+5\left(3s+1\right)
Tauwehea te s i te tuatahi me te 5 i te rōpū tuarua.
\left(3s+1\right)\left(s+5\right)
Whakatauwehea atu te kīanga pātahi 3s+1 mā te whakamahi i te āhuatanga tātai tohatoha.
3s^{2}+16s+5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
s=\frac{-16±\sqrt{16^{2}-4\times 3\times 5}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
s=\frac{-16±\sqrt{256-4\times 3\times 5}}{2\times 3}
Pūrua 16.
s=\frac{-16±\sqrt{256-12\times 5}}{2\times 3}
Whakareatia -4 ki te 3.
s=\frac{-16±\sqrt{256-60}}{2\times 3}
Whakareatia -12 ki te 5.
s=\frac{-16±\sqrt{196}}{2\times 3}
Tāpiri 256 ki te -60.
s=\frac{-16±14}{2\times 3}
Tuhia te pūtakerua o te 196.
s=\frac{-16±14}{6}
Whakareatia 2 ki te 3.
s=-\frac{2}{6}
Nā, me whakaoti te whārite s=\frac{-16±14}{6} ina he tāpiri te ±. Tāpiri -16 ki te 14.
s=-\frac{1}{3}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
s=-\frac{30}{6}
Nā, me whakaoti te whārite s=\frac{-16±14}{6} ina he tango te ±. Tango 14 mai i -16.
s=-5
Whakawehe -30 ki te 6.
3s^{2}+16s+5=3\left(s-\left(-\frac{1}{3}\right)\right)\left(s-\left(-5\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{1}{3} mō te x_{1} me te -5 mō te x_{2}.
3s^{2}+16s+5=3\left(s+\frac{1}{3}\right)\left(s+5\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
3s^{2}+16s+5=3\times \frac{3s+1}{3}\left(s+5\right)
Tāpiri \frac{1}{3} ki te s mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3s^{2}+16s+5=\left(3s+1\right)\left(s+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.