Whakaoti mō r
r = \frac{\sqrt{13} + 4}{3} \approx 2.535183758
r=\frac{4-\sqrt{13}}{3}\approx 0.131482908
Tohaina
Kua tāruatia ki te papatopenga
3r^{2}-8r+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 3}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -8 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-8\right)±\sqrt{64-4\times 3}}{2\times 3}
Pūrua -8.
r=\frac{-\left(-8\right)±\sqrt{64-12}}{2\times 3}
Whakareatia -4 ki te 3.
r=\frac{-\left(-8\right)±\sqrt{52}}{2\times 3}
Tāpiri 64 ki te -12.
r=\frac{-\left(-8\right)±2\sqrt{13}}{2\times 3}
Tuhia te pūtakerua o te 52.
r=\frac{8±2\sqrt{13}}{2\times 3}
Ko te tauaro o -8 ko 8.
r=\frac{8±2\sqrt{13}}{6}
Whakareatia 2 ki te 3.
r=\frac{2\sqrt{13}+8}{6}
Nā, me whakaoti te whārite r=\frac{8±2\sqrt{13}}{6} ina he tāpiri te ±. Tāpiri 8 ki te 2\sqrt{13}.
r=\frac{\sqrt{13}+4}{3}
Whakawehe 8+2\sqrt{13} ki te 6.
r=\frac{8-2\sqrt{13}}{6}
Nā, me whakaoti te whārite r=\frac{8±2\sqrt{13}}{6} ina he tango te ±. Tango 2\sqrt{13} mai i 8.
r=\frac{4-\sqrt{13}}{3}
Whakawehe 8-2\sqrt{13} ki te 6.
r=\frac{\sqrt{13}+4}{3} r=\frac{4-\sqrt{13}}{3}
Kua oti te whārite te whakatau.
3r^{2}-8r+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3r^{2}-8r+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
3r^{2}-8r=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{3r^{2}-8r}{3}=-\frac{1}{3}
Whakawehea ngā taha e rua ki te 3.
r^{2}-\frac{8}{3}r=-\frac{1}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
r^{2}-\frac{8}{3}r+\left(-\frac{4}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{4}{3}\right)^{2}
Whakawehea te -\frac{8}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{4}{3}. Nā, tāpiria te pūrua o te -\frac{4}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
r^{2}-\frac{8}{3}r+\frac{16}{9}=-\frac{1}{3}+\frac{16}{9}
Pūruatia -\frac{4}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
r^{2}-\frac{8}{3}r+\frac{16}{9}=\frac{13}{9}
Tāpiri -\frac{1}{3} ki te \frac{16}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(r-\frac{4}{3}\right)^{2}=\frac{13}{9}
Tauwehea r^{2}-\frac{8}{3}r+\frac{16}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{4}{3}\right)^{2}}=\sqrt{\frac{13}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r-\frac{4}{3}=\frac{\sqrt{13}}{3} r-\frac{4}{3}=-\frac{\sqrt{13}}{3}
Whakarūnātia.
r=\frac{\sqrt{13}+4}{3} r=\frac{4-\sqrt{13}}{3}
Me tāpiri \frac{4}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}