Tīpoka ki ngā ihirangi matua
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3r^{2}-5r-5=7r+58
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te r+1.
3r^{2}-5r-5-7r=58
Tangohia te 7r mai i ngā taha e rua.
3r^{2}-12r-5=58
Pahekotia te -5r me -7r, ka -12r.
3r^{2}-12r-5-58=0
Tangohia te 58 mai i ngā taha e rua.
3r^{2}-12r-63=0
Tangohia te 58 i te -5, ka -63.
r^{2}-4r-21=0
Whakawehea ngā taha e rua ki te 3.
a+b=-4 ab=1\left(-21\right)=-21
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei r^{2}+ar+br-21. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-21 3,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -21.
1-21=-20 3-7=-4
Tātaihia te tapeke mō ia takirua.
a=-7 b=3
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(r^{2}-7r\right)+\left(3r-21\right)
Tuhia anō te r^{2}-4r-21 hei \left(r^{2}-7r\right)+\left(3r-21\right).
r\left(r-7\right)+3\left(r-7\right)
Tauwehea te r i te tuatahi me te 3 i te rōpū tuarua.
\left(r-7\right)\left(r+3\right)
Whakatauwehea atu te kīanga pātahi r-7 mā te whakamahi i te āhuatanga tātai tohatoha.
r=7 r=-3
Hei kimi otinga whārite, me whakaoti te r-7=0 me te r+3=0.
3r^{2}-5r-5=7r+58
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te r+1.
3r^{2}-5r-5-7r=58
Tangohia te 7r mai i ngā taha e rua.
3r^{2}-12r-5=58
Pahekotia te -5r me -7r, ka -12r.
3r^{2}-12r-5-58=0
Tangohia te 58 mai i ngā taha e rua.
3r^{2}-12r-63=0
Tangohia te 58 i te -5, ka -63.
r=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\left(-63\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -12 mō b, me -63 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-12\right)±\sqrt{144-4\times 3\left(-63\right)}}{2\times 3}
Pūrua -12.
r=\frac{-\left(-12\right)±\sqrt{144-12\left(-63\right)}}{2\times 3}
Whakareatia -4 ki te 3.
r=\frac{-\left(-12\right)±\sqrt{144+756}}{2\times 3}
Whakareatia -12 ki te -63.
r=\frac{-\left(-12\right)±\sqrt{900}}{2\times 3}
Tāpiri 144 ki te 756.
r=\frac{-\left(-12\right)±30}{2\times 3}
Tuhia te pūtakerua o te 900.
r=\frac{12±30}{2\times 3}
Ko te tauaro o -12 ko 12.
r=\frac{12±30}{6}
Whakareatia 2 ki te 3.
r=\frac{42}{6}
Nā, me whakaoti te whārite r=\frac{12±30}{6} ina he tāpiri te ±. Tāpiri 12 ki te 30.
r=7
Whakawehe 42 ki te 6.
r=-\frac{18}{6}
Nā, me whakaoti te whārite r=\frac{12±30}{6} ina he tango te ±. Tango 30 mai i 12.
r=-3
Whakawehe -18 ki te 6.
r=7 r=-3
Kua oti te whārite te whakatau.
3r^{2}-5r-5=7r+58
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te r+1.
3r^{2}-5r-5-7r=58
Tangohia te 7r mai i ngā taha e rua.
3r^{2}-12r-5=58
Pahekotia te -5r me -7r, ka -12r.
3r^{2}-12r=58+5
Me tāpiri te 5 ki ngā taha e rua.
3r^{2}-12r=63
Tāpirihia te 58 ki te 5, ka 63.
\frac{3r^{2}-12r}{3}=\frac{63}{3}
Whakawehea ngā taha e rua ki te 3.
r^{2}+\left(-\frac{12}{3}\right)r=\frac{63}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
r^{2}-4r=\frac{63}{3}
Whakawehe -12 ki te 3.
r^{2}-4r=21
Whakawehe 63 ki te 3.
r^{2}-4r+\left(-2\right)^{2}=21+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
r^{2}-4r+4=21+4
Pūrua -2.
r^{2}-4r+4=25
Tāpiri 21 ki te 4.
\left(r-2\right)^{2}=25
Tauwehea r^{2}-4r+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-2\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r-2=5 r-2=-5
Whakarūnātia.
r=7 r=-3
Me tāpiri 2 ki ngā taha e rua o te whārite.