Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=1 ab=3\left(-14\right)=-42
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3r^{2}+ar+br-14. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,42 -2,21 -3,14 -6,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -42.
-1+42=41 -2+21=19 -3+14=11 -6+7=1
Tātaihia te tapeke mō ia takirua.
a=-6 b=7
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(3r^{2}-6r\right)+\left(7r-14\right)
Tuhia anō te 3r^{2}+r-14 hei \left(3r^{2}-6r\right)+\left(7r-14\right).
3r\left(r-2\right)+7\left(r-2\right)
Tauwehea te 3r i te tuatahi me te 7 i te rōpū tuarua.
\left(r-2\right)\left(3r+7\right)
Whakatauwehea atu te kīanga pātahi r-2 mā te whakamahi i te āhuatanga tātai tohatoha.
3r^{2}+r-14=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
r=\frac{-1±\sqrt{1^{2}-4\times 3\left(-14\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-1±\sqrt{1-4\times 3\left(-14\right)}}{2\times 3}
Pūrua 1.
r=\frac{-1±\sqrt{1-12\left(-14\right)}}{2\times 3}
Whakareatia -4 ki te 3.
r=\frac{-1±\sqrt{1+168}}{2\times 3}
Whakareatia -12 ki te -14.
r=\frac{-1±\sqrt{169}}{2\times 3}
Tāpiri 1 ki te 168.
r=\frac{-1±13}{2\times 3}
Tuhia te pūtakerua o te 169.
r=\frac{-1±13}{6}
Whakareatia 2 ki te 3.
r=\frac{12}{6}
Nā, me whakaoti te whārite r=\frac{-1±13}{6} ina he tāpiri te ±. Tāpiri -1 ki te 13.
r=2
Whakawehe 12 ki te 6.
r=-\frac{14}{6}
Nā, me whakaoti te whārite r=\frac{-1±13}{6} ina he tango te ±. Tango 13 mai i -1.
r=-\frac{7}{3}
Whakahekea te hautanga \frac{-14}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
3r^{2}+r-14=3\left(r-2\right)\left(r-\left(-\frac{7}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te -\frac{7}{3} mō te x_{2}.
3r^{2}+r-14=3\left(r-2\right)\left(r+\frac{7}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
3r^{2}+r-14=3\left(r-2\right)\times \frac{3r+7}{3}
Tāpiri \frac{7}{3} ki te r mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3r^{2}+r-14=\left(r-2\right)\left(3r+7\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.