Tīpoka ki ngā ihirangi matua
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

r^{2}+3r+2=0
Whakawehea ngā taha e rua ki te 3.
a+b=3 ab=1\times 2=2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei r^{2}+ar+br+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(r^{2}+r\right)+\left(2r+2\right)
Tuhia anō te r^{2}+3r+2 hei \left(r^{2}+r\right)+\left(2r+2\right).
r\left(r+1\right)+2\left(r+1\right)
Tauwehea te r i te tuatahi me te 2 i te rōpū tuarua.
\left(r+1\right)\left(r+2\right)
Whakatauwehea atu te kīanga pātahi r+1 mā te whakamahi i te āhuatanga tātai tohatoha.
r=-1 r=-2
Hei kimi otinga whārite, me whakaoti te r+1=0 me te r+2=0.
3r^{2}+9r+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-9±\sqrt{9^{2}-4\times 3\times 6}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 9 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-9±\sqrt{81-4\times 3\times 6}}{2\times 3}
Pūrua 9.
r=\frac{-9±\sqrt{81-12\times 6}}{2\times 3}
Whakareatia -4 ki te 3.
r=\frac{-9±\sqrt{81-72}}{2\times 3}
Whakareatia -12 ki te 6.
r=\frac{-9±\sqrt{9}}{2\times 3}
Tāpiri 81 ki te -72.
r=\frac{-9±3}{2\times 3}
Tuhia te pūtakerua o te 9.
r=\frac{-9±3}{6}
Whakareatia 2 ki te 3.
r=-\frac{6}{6}
Nā, me whakaoti te whārite r=\frac{-9±3}{6} ina he tāpiri te ±. Tāpiri -9 ki te 3.
r=-1
Whakawehe -6 ki te 6.
r=-\frac{12}{6}
Nā, me whakaoti te whārite r=\frac{-9±3}{6} ina he tango te ±. Tango 3 mai i -9.
r=-2
Whakawehe -12 ki te 6.
r=-1 r=-2
Kua oti te whārite te whakatau.
3r^{2}+9r+6=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3r^{2}+9r+6-6=-6
Me tango 6 mai i ngā taha e rua o te whārite.
3r^{2}+9r=-6
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
\frac{3r^{2}+9r}{3}=-\frac{6}{3}
Whakawehea ngā taha e rua ki te 3.
r^{2}+\frac{9}{3}r=-\frac{6}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
r^{2}+3r=-\frac{6}{3}
Whakawehe 9 ki te 3.
r^{2}+3r=-2
Whakawehe -6 ki te 3.
r^{2}+3r+\left(\frac{3}{2}\right)^{2}=-2+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
r^{2}+3r+\frac{9}{4}=-2+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
r^{2}+3r+\frac{9}{4}=\frac{1}{4}
Tāpiri -2 ki te \frac{9}{4}.
\left(r+\frac{3}{2}\right)^{2}=\frac{1}{4}
Tauwehea r^{2}+3r+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r+\frac{3}{2}=\frac{1}{2} r+\frac{3}{2}=-\frac{1}{2}
Whakarūnātia.
r=-1 r=-2
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.