Whakaoti mō r
r=-\frac{4s}{3}-2
Whakaoti mō s
s=-\frac{3r}{4}-\frac{3}{2}
Tohaina
Kua tāruatia ki te papatopenga
3r=-4s-6
He hanga arowhānui tō te whārite.
\frac{3r}{3}=\frac{-4s-6}{3}
Whakawehea ngā taha e rua ki te 3.
r=\frac{-4s-6}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
r=-\frac{4s}{3}-2
Whakawehe -4s-6 ki te 3.
-4s-6=3r
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-4s=3r+6
Me tāpiri te 6 ki ngā taha e rua.
\frac{-4s}{-4}=\frac{3r+6}{-4}
Whakawehea ngā taha e rua ki te -4.
s=\frac{3r+6}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
s=-\frac{3r}{4}-\frac{3}{2}
Whakawehe 6+3r ki te -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}