Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(q^{2}-45q+450\right)
Tauwehea te 3.
a+b=-45 ab=1\times 450=450
Whakaarohia te q^{2}-45q+450. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei q^{2}+aq+bq+450. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-450 -2,-225 -3,-150 -5,-90 -6,-75 -9,-50 -10,-45 -15,-30 -18,-25
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 450.
-1-450=-451 -2-225=-227 -3-150=-153 -5-90=-95 -6-75=-81 -9-50=-59 -10-45=-55 -15-30=-45 -18-25=-43
Tātaihia te tapeke mō ia takirua.
a=-30 b=-15
Ko te otinga te takirua ka hoatu i te tapeke -45.
\left(q^{2}-30q\right)+\left(-15q+450\right)
Tuhia anō te q^{2}-45q+450 hei \left(q^{2}-30q\right)+\left(-15q+450\right).
q\left(q-30\right)-15\left(q-30\right)
Tauwehea te q i te tuatahi me te -15 i te rōpū tuarua.
\left(q-30\right)\left(q-15\right)
Whakatauwehea atu te kīanga pātahi q-30 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(q-30\right)\left(q-15\right)
Me tuhi anō te kīanga whakatauwehe katoa.
3q^{2}-135q+1350=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
q=\frac{-\left(-135\right)±\sqrt{\left(-135\right)^{2}-4\times 3\times 1350}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
q=\frac{-\left(-135\right)±\sqrt{18225-4\times 3\times 1350}}{2\times 3}
Pūrua -135.
q=\frac{-\left(-135\right)±\sqrt{18225-12\times 1350}}{2\times 3}
Whakareatia -4 ki te 3.
q=\frac{-\left(-135\right)±\sqrt{18225-16200}}{2\times 3}
Whakareatia -12 ki te 1350.
q=\frac{-\left(-135\right)±\sqrt{2025}}{2\times 3}
Tāpiri 18225 ki te -16200.
q=\frac{-\left(-135\right)±45}{2\times 3}
Tuhia te pūtakerua o te 2025.
q=\frac{135±45}{2\times 3}
Ko te tauaro o -135 ko 135.
q=\frac{135±45}{6}
Whakareatia 2 ki te 3.
q=\frac{180}{6}
Nā, me whakaoti te whārite q=\frac{135±45}{6} ina he tāpiri te ±. Tāpiri 135 ki te 45.
q=30
Whakawehe 180 ki te 6.
q=\frac{90}{6}
Nā, me whakaoti te whārite q=\frac{135±45}{6} ina he tango te ±. Tango 45 mai i 135.
q=15
Whakawehe 90 ki te 6.
3q^{2}-135q+1350=3\left(q-30\right)\left(q-15\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 30 mō te x_{1} me te 15 mō te x_{2}.